Cargando…
Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed
Intramuscular high-frequency coherence is increased during visually guided treadmill walking as a consequence of increased supra-spinal input. The influence of walking speed on intramuscular coherence and its inter-trial reproducibility need to be established before adoption as a functional gait ass...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224862/ https://www.ncbi.nlm.nih.gov/pubmed/37199775 http://dx.doi.org/10.1007/s00221-023-06635-4 |
_version_ | 1785050287653781504 |
---|---|
author | Zipser-Mohammadzada, Freschta Scheffers, Marjelle Fredie Conway, Bernard A. Halliday, David M. Zipser, Carl Moritz Curt, Armin Schubert, Martin |
author_facet | Zipser-Mohammadzada, Freschta Scheffers, Marjelle Fredie Conway, Bernard A. Halliday, David M. Zipser, Carl Moritz Curt, Armin Schubert, Martin |
author_sort | Zipser-Mohammadzada, Freschta |
collection | PubMed |
description | Intramuscular high-frequency coherence is increased during visually guided treadmill walking as a consequence of increased supra-spinal input. The influence of walking speed on intramuscular coherence and its inter-trial reproducibility need to be established before adoption as a functional gait assessment tool in clinical settings. Here, fifteen healthy controls performed a normal and a target walking task on a treadmill at various speeds (0.3 m/s, 0.5 m/s, 0.9 m/s, and preferred) during two sessions. Intramuscular coherence was calculated between two surface EMG recordings sites of the Tibialis anterior muscle during the swing phase of walking. The results were averaged across low-frequency (5–14 Hz) and high-frequency (15–55 Hz) bands. The effect of speed, task, and time on mean coherence was assessed using three-way repeated measures ANOVA. Reliability and agreement were calculated with the intra-class correlation coefficient and Bland–Altman method, respectively. Intramuscular coherence during target walking was significantly higher than during normal walking across all walking speeds in the high-frequency band as obtained by the three-way repeated measures ANOVA. Interaction effects between task and speed were found for the low- and high-frequency bands, suggesting that task-dependent differences increase at higher walking speeds. Reliability of intramuscular coherence was moderate to excellent for most normal and target walking tasks in all frequency bands. This study confirms previous reports of increased intramuscular coherence during target walking, while providing first evidence for reproducibility and robustness of this measure as a requirement to investigate supra-spinal input. Trial registration Registry number/ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00221-023-06635-4. |
format | Online Article Text |
id | pubmed-10224862 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-102248622023-05-29 Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed Zipser-Mohammadzada, Freschta Scheffers, Marjelle Fredie Conway, Bernard A. Halliday, David M. Zipser, Carl Moritz Curt, Armin Schubert, Martin Exp Brain Res Research Article Intramuscular high-frequency coherence is increased during visually guided treadmill walking as a consequence of increased supra-spinal input. The influence of walking speed on intramuscular coherence and its inter-trial reproducibility need to be established before adoption as a functional gait assessment tool in clinical settings. Here, fifteen healthy controls performed a normal and a target walking task on a treadmill at various speeds (0.3 m/s, 0.5 m/s, 0.9 m/s, and preferred) during two sessions. Intramuscular coherence was calculated between two surface EMG recordings sites of the Tibialis anterior muscle during the swing phase of walking. The results were averaged across low-frequency (5–14 Hz) and high-frequency (15–55 Hz) bands. The effect of speed, task, and time on mean coherence was assessed using three-way repeated measures ANOVA. Reliability and agreement were calculated with the intra-class correlation coefficient and Bland–Altman method, respectively. Intramuscular coherence during target walking was significantly higher than during normal walking across all walking speeds in the high-frequency band as obtained by the three-way repeated measures ANOVA. Interaction effects between task and speed were found for the low- and high-frequency bands, suggesting that task-dependent differences increase at higher walking speeds. Reliability of intramuscular coherence was moderate to excellent for most normal and target walking tasks in all frequency bands. This study confirms previous reports of increased intramuscular coherence during target walking, while providing first evidence for reproducibility and robustness of this measure as a requirement to investigate supra-spinal input. Trial registration Registry number/ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00221-023-06635-4. Springer Berlin Heidelberg 2023-05-18 2023 /pmc/articles/PMC10224862/ /pubmed/37199775 http://dx.doi.org/10.1007/s00221-023-06635-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Zipser-Mohammadzada, Freschta Scheffers, Marjelle Fredie Conway, Bernard A. Halliday, David M. Zipser, Carl Moritz Curt, Armin Schubert, Martin Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed |
title | Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed |
title_full | Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed |
title_fullStr | Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed |
title_full_unstemmed | Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed |
title_short | Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed |
title_sort | intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224862/ https://www.ncbi.nlm.nih.gov/pubmed/37199775 http://dx.doi.org/10.1007/s00221-023-06635-4 |
work_keys_str_mv | AT zipsermohammadzadafreschta intramuscularcoherenceenablesrobustassessmentofmodulatedsupraspinalinputinhumangaitaninterdependencestudyofvisualtaskandwalkingspeed AT scheffersmarjellefredie intramuscularcoherenceenablesrobustassessmentofmodulatedsupraspinalinputinhumangaitaninterdependencestudyofvisualtaskandwalkingspeed AT conwaybernarda intramuscularcoherenceenablesrobustassessmentofmodulatedsupraspinalinputinhumangaitaninterdependencestudyofvisualtaskandwalkingspeed AT hallidaydavidm intramuscularcoherenceenablesrobustassessmentofmodulatedsupraspinalinputinhumangaitaninterdependencestudyofvisualtaskandwalkingspeed AT zipsercarlmoritz intramuscularcoherenceenablesrobustassessmentofmodulatedsupraspinalinputinhumangaitaninterdependencestudyofvisualtaskandwalkingspeed AT curtarmin intramuscularcoherenceenablesrobustassessmentofmodulatedsupraspinalinputinhumangaitaninterdependencestudyofvisualtaskandwalkingspeed AT schubertmartin intramuscularcoherenceenablesrobustassessmentofmodulatedsupraspinalinputinhumangaitaninterdependencestudyofvisualtaskandwalkingspeed |