Cargando…
Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases
Neurological diseases can be broadly divided according to causal factors into circulatory system disorders leading to ischemic stroke; degeneration of the nerve cells leading to neurodegenerative diseases, such as Alzheimer’s (AD) and Parkinson’s (PD) diseases, and immune system disorders; bioelectr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224870/ https://www.ncbi.nlm.nih.gov/pubmed/37039942 http://dx.doi.org/10.1007/s12035-023-03329-4 |
_version_ | 1785050289286414336 |
---|---|
author | Korczowska-Łącka, Izabela Hurła, Mikołaj Banaszek, Natalia Kobylarek, Dominik Szymanowicz, Oliwia Kozubski, Wojciech Dorszewska, Jolanta |
author_facet | Korczowska-Łącka, Izabela Hurła, Mikołaj Banaszek, Natalia Kobylarek, Dominik Szymanowicz, Oliwia Kozubski, Wojciech Dorszewska, Jolanta |
author_sort | Korczowska-Łącka, Izabela |
collection | PubMed |
description | Neurological diseases can be broadly divided according to causal factors into circulatory system disorders leading to ischemic stroke; degeneration of the nerve cells leading to neurodegenerative diseases, such as Alzheimer’s (AD) and Parkinson’s (PD) diseases, and immune system disorders; bioelectric activity (epileptic) problems; and genetically determined conditions as well as viral and bacterial infections developing inflammation. Regardless of the cause of neurological diseases, they are usually accompanied by disturbances of the central energy in a completely unexplained mechanism. The brain makes up only 2% of the human body’s weight; however, while working, it uses as much as 20% of the energy obtained by the body. The energy requirements of the brain are very high, and regulatory mechanisms in the brain operate to ensure adequate neuronal activity. Therefore, an understanding of neuroenergetics is rapidly evolving from a “neurocentric” view to a more integrated picture involving cooperativity between structural and molecular factors in the central nervous system. This article reviewed selected molecular biomarkers of oxidative stress and energy metabolism disorders such as homocysteine, DNA damage such as 8-oxo2dG, genetic variants, and antioxidants such as glutathione in selected neurological diseases including ischemic stroke, AD, PD, and epilepsy. This review summarizes our and others’ recent research on oxidative stress in neurological disorders. In the future, the diagnosis and treatment of neurological diseases may be substantially improved by identifying specific early markers of metabolic and energy disorders. |
format | Online Article Text |
id | pubmed-10224870 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-102248702023-05-29 Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases Korczowska-Łącka, Izabela Hurła, Mikołaj Banaszek, Natalia Kobylarek, Dominik Szymanowicz, Oliwia Kozubski, Wojciech Dorszewska, Jolanta Mol Neurobiol Article Neurological diseases can be broadly divided according to causal factors into circulatory system disorders leading to ischemic stroke; degeneration of the nerve cells leading to neurodegenerative diseases, such as Alzheimer’s (AD) and Parkinson’s (PD) diseases, and immune system disorders; bioelectric activity (epileptic) problems; and genetically determined conditions as well as viral and bacterial infections developing inflammation. Regardless of the cause of neurological diseases, they are usually accompanied by disturbances of the central energy in a completely unexplained mechanism. The brain makes up only 2% of the human body’s weight; however, while working, it uses as much as 20% of the energy obtained by the body. The energy requirements of the brain are very high, and regulatory mechanisms in the brain operate to ensure adequate neuronal activity. Therefore, an understanding of neuroenergetics is rapidly evolving from a “neurocentric” view to a more integrated picture involving cooperativity between structural and molecular factors in the central nervous system. This article reviewed selected molecular biomarkers of oxidative stress and energy metabolism disorders such as homocysteine, DNA damage such as 8-oxo2dG, genetic variants, and antioxidants such as glutathione in selected neurological diseases including ischemic stroke, AD, PD, and epilepsy. This review summarizes our and others’ recent research on oxidative stress in neurological disorders. In the future, the diagnosis and treatment of neurological diseases may be substantially improved by identifying specific early markers of metabolic and energy disorders. Springer US 2023-04-11 2023 /pmc/articles/PMC10224870/ /pubmed/37039942 http://dx.doi.org/10.1007/s12035-023-03329-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Korczowska-Łącka, Izabela Hurła, Mikołaj Banaszek, Natalia Kobylarek, Dominik Szymanowicz, Oliwia Kozubski, Wojciech Dorszewska, Jolanta Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases |
title | Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases |
title_full | Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases |
title_fullStr | Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases |
title_full_unstemmed | Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases |
title_short | Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases |
title_sort | selected biomarkers of oxidative stress and energy metabolism disorders in neurological diseases |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224870/ https://www.ncbi.nlm.nih.gov/pubmed/37039942 http://dx.doi.org/10.1007/s12035-023-03329-4 |
work_keys_str_mv | AT korczowskałackaizabela selectedbiomarkersofoxidativestressandenergymetabolismdisordersinneurologicaldiseases AT hurłamikołaj selectedbiomarkersofoxidativestressandenergymetabolismdisordersinneurologicaldiseases AT banaszeknatalia selectedbiomarkersofoxidativestressandenergymetabolismdisordersinneurologicaldiseases AT kobylarekdominik selectedbiomarkersofoxidativestressandenergymetabolismdisordersinneurologicaldiseases AT szymanowiczoliwia selectedbiomarkersofoxidativestressandenergymetabolismdisordersinneurologicaldiseases AT kozubskiwojciech selectedbiomarkersofoxidativestressandenergymetabolismdisordersinneurologicaldiseases AT dorszewskajolanta selectedbiomarkersofoxidativestressandenergymetabolismdisordersinneurologicaldiseases |