Cargando…

Diagnosis of COVID-19 from blood parameters using convolutional neural network

Asymptomatically presenting COVID-19 complicates the detection of infected individuals. Additionally, the virus changes too many genomic variants, which increases the virus’s ability to spread. Because there isn’t a specific treatment for COVID-19 in a short time, the essential goal is to reduce the...

Descripción completa

Detalles Bibliográficos
Autores principales: Erol Doğan, Gizemnur, Uzbaş, Betül
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225057/
https://www.ncbi.nlm.nih.gov/pubmed/37362276
http://dx.doi.org/10.1007/s00500-023-08508-y
Descripción
Sumario:Asymptomatically presenting COVID-19 complicates the detection of infected individuals. Additionally, the virus changes too many genomic variants, which increases the virus’s ability to spread. Because there isn’t a specific treatment for COVID-19 in a short time, the essential goal is to reduce the virulence of the disease. Blood parameters, which contain essential clinical information about infectious diseases and are easy to access, have an important place in COVID-19 detection. The convolutional neural network (CNN) architecture, which is popular in image processing, produces highly successful results for COVID-19 detection models. When the literature is examined, it is seen that COVID-19 studies with CNN are generally done using lung images. In this study, one-dimensional (1D) blood parameters data were converted into two-dimensional (2D) image data after preprocessing, and COVID-19 detection was made with CNN. The t-distributed stochastic neighbor embedding method was applied to transfer the feature vectors to the 2D plane. All data were framed with convex hull and minimum bounding rectangle algorithms to obtain image data. The image data obtained by pixel mapping was presented to the developed 3-line CNN architecture. This study proposes an effective and successful model by providing a combination of low-cost and rapidly-accessible blood parameters and CNN architecture making image data processing highly successful for COVID-19 detection. Ultimately, COVID-19 detection was made with a success rate of 94.85%. This study has brought a new perspective to COVID-19 detection studies by obtaining 2D image data from 1D COVID-19 blood parameters and using CNN.