Cargando…
Applications of Microct Imaging to Archaeobotanical Research
The potential applications of microCT scanning in the field of archaeobotany are only just beginning to be explored. The imaging technique can extract new archaeobotanical information from existing archaeobotanical collections as well as create new archaeobotanical assemblages within ancient ceramic...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225294/ https://www.ncbi.nlm.nih.gov/pubmed/37359278 http://dx.doi.org/10.1007/s10816-023-09610-z |
Sumario: | The potential applications of microCT scanning in the field of archaeobotany are only just beginning to be explored. The imaging technique can extract new archaeobotanical information from existing archaeobotanical collections as well as create new archaeobotanical assemblages within ancient ceramics and other artefact types. The technique could aid in answering archaeobotanical questions about the early histories of some of the world’s most important food crops from geographical regions with amongst the poorest rates of archaeobotanical preservation and where ancient plant exploitation remains poorly understood. This paper reviews current uses of microCT imaging in the investigation of archaeobotanical questions, as well as in cognate fields of geosciences, geoarchaeology, botany and palaeobotany. The technique has to date been used in a small number of novel methodological studies to extract internal anatomical morphologies and three-dimensional quantitative data from a range of food crops, which includes sexually-propagated cereals and legumes, and asexually-propagated underground storage organs (USOs). The large three-dimensional, digital datasets produced by microCT scanning have been shown to aid in taxonomic identification of archaeobotanical specimens, as well as robustly assess domestication status. In the future, as scanning technology, computer processing power and data storage capacities continue to improve, the possible applications of microCT scanning to archaeobotanical studies will only increase with the development of machine and deep learning networks enabling the automation of analyses of large archaeobotanical assemblages. |
---|