Cargando…
Biological Tissue-Inspired Ultrasoft, Ultrathin, and Mechanically Enhanced Microfiber Composite Hydrogel for Flexible Bioelectronics
Hydrogels offer tissue-like softness, stretchability, fracture toughness, ionic conductivity, and compatibility with biological tissues, which make them promising candidates for fabricating flexible bioelectronics. A soft hydrogel film offers an ideal interface to directly bridge thin-film electroni...
Autores principales: | Gao, Qiang, Sun, Fuqin, Li, Yue, Li, Lianhui, Liu, Mengyuan, Wang, Shuqi, Wang, Yongfeng, Li, Tie, Liu, Lin, Feng, Simin, Wang, Xiaowei, Agarwal, Seema, Zhang, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225432/ https://www.ncbi.nlm.nih.gov/pubmed/37245163 http://dx.doi.org/10.1007/s40820-023-01096-4 |
Ejemplares similares
-
Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels
por: Lim, Chanhyuk, et al.
Publicado: (2021) -
Tribology of bio-inspired nanowrinkled films on ultrasoft substrates
por: Lackner, Juergen M., et al.
Publicado: (2013) -
Biological receptor-inspired flexible artificial synapse based on ionic dynamics
por: Lu, Qifeng, et al.
Publicado: (2020) -
Hydrogel Bioelectronics for Health Monitoring
por: Lyu, Xinyan, et al.
Publicado: (2023) -
Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics
por: Gan, Donglin, et al.
Publicado: (2020)