Cargando…
CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato
Recently, CRISPR-Cas9-based genome editing has been widely used for plant breeding. In our previous report, a tomato gene encoding hybrid proline-rich protein 1 (HyPRP1), a negative regulator of salt stress responses, has been edited using a CRISPR-Cas9 multiplexing approach that resulted in precise...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225705/ https://www.ncbi.nlm.nih.gov/pubmed/37255559 http://dx.doi.org/10.3389/fpls.2023.1186932 |
_version_ | 1785050433701543936 |
---|---|
author | Tran, Mil Thi Son, Geon Hui Song, Young Jong Nguyen, Ngan Thi Park, Seonyeong Thach, Thanh Vu Kim, Jihae Sung, Yeon Woo Das, Swati Pramanik, Dibyajyoti Lee, Jinsu Son, Ki-Ho Kim, Sang Hee Vu, Tien Van Kim, Jae-Yean |
author_facet | Tran, Mil Thi Son, Geon Hui Song, Young Jong Nguyen, Ngan Thi Park, Seonyeong Thach, Thanh Vu Kim, Jihae Sung, Yeon Woo Das, Swati Pramanik, Dibyajyoti Lee, Jinsu Son, Ki-Ho Kim, Sang Hee Vu, Tien Van Kim, Jae-Yean |
author_sort | Tran, Mil Thi |
collection | PubMed |
description | Recently, CRISPR-Cas9-based genome editing has been widely used for plant breeding. In our previous report, a tomato gene encoding hybrid proline-rich protein 1 (HyPRP1), a negative regulator of salt stress responses, has been edited using a CRISPR-Cas9 multiplexing approach that resulted in precise eliminations of its functional domains, proline-rich domain (PRD) and eight cysteine-motif (8CM). We subsequently demonstrated that eliminating the PRD domain of HyPRP1 in tomatoes conferred the highest level of salinity tolerance. In this study, we characterized the edited lines under several abiotic and biotic stresses to examine the possibility of multiple stress tolerance. Our data reveal that the 8CM removal variants of HK and the KO alleles of both HK and 15T01 cultivars exhibited moderate heat stress tolerance. Similarly, plants carrying either the domains of the PRD removal variant (PR1v1) or 8CM removal variants (PR2v2 and PR2v3) showed better germination under osmosis stress (up to 200 mM mannitol) compared to the WT control. Moreover, the PR1v1 line continuously grew after 5 days of water cutoff. When the edited lines were challenged with pathogenic bacteria of Pseudomonas syringae pv. tomato (Pto) DC3000, the growth of the bacterium was significantly reduced by 2.0- to 2.5-fold compared to that in WT plants. However, the edited alleles enhanced susceptibility against Fusarium oxysporum f. sp. lycopersici, which causes fusarium wilt. CRISPR-Cas9-based precise domain editing of the SlHyPRP1 gene generated multi-stress-tolerant alleles that could be used as genetic materials for tomato breeding. |
format | Online Article Text |
id | pubmed-10225705 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102257052023-05-30 CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato Tran, Mil Thi Son, Geon Hui Song, Young Jong Nguyen, Ngan Thi Park, Seonyeong Thach, Thanh Vu Kim, Jihae Sung, Yeon Woo Das, Swati Pramanik, Dibyajyoti Lee, Jinsu Son, Ki-Ho Kim, Sang Hee Vu, Tien Van Kim, Jae-Yean Front Plant Sci Plant Science Recently, CRISPR-Cas9-based genome editing has been widely used for plant breeding. In our previous report, a tomato gene encoding hybrid proline-rich protein 1 (HyPRP1), a negative regulator of salt stress responses, has been edited using a CRISPR-Cas9 multiplexing approach that resulted in precise eliminations of its functional domains, proline-rich domain (PRD) and eight cysteine-motif (8CM). We subsequently demonstrated that eliminating the PRD domain of HyPRP1 in tomatoes conferred the highest level of salinity tolerance. In this study, we characterized the edited lines under several abiotic and biotic stresses to examine the possibility of multiple stress tolerance. Our data reveal that the 8CM removal variants of HK and the KO alleles of both HK and 15T01 cultivars exhibited moderate heat stress tolerance. Similarly, plants carrying either the domains of the PRD removal variant (PR1v1) or 8CM removal variants (PR2v2 and PR2v3) showed better germination under osmosis stress (up to 200 mM mannitol) compared to the WT control. Moreover, the PR1v1 line continuously grew after 5 days of water cutoff. When the edited lines were challenged with pathogenic bacteria of Pseudomonas syringae pv. tomato (Pto) DC3000, the growth of the bacterium was significantly reduced by 2.0- to 2.5-fold compared to that in WT plants. However, the edited alleles enhanced susceptibility against Fusarium oxysporum f. sp. lycopersici, which causes fusarium wilt. CRISPR-Cas9-based precise domain editing of the SlHyPRP1 gene generated multi-stress-tolerant alleles that could be used as genetic materials for tomato breeding. Frontiers Media S.A. 2023-05-15 /pmc/articles/PMC10225705/ /pubmed/37255559 http://dx.doi.org/10.3389/fpls.2023.1186932 Text en Copyright © 2023 Tran, Son, Song, Nguyen, Park, Thach, Kim, Sung, Das, Pramanik, Lee, Son, Kim, Vu and Kim https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Tran, Mil Thi Son, Geon Hui Song, Young Jong Nguyen, Ngan Thi Park, Seonyeong Thach, Thanh Vu Kim, Jihae Sung, Yeon Woo Das, Swati Pramanik, Dibyajyoti Lee, Jinsu Son, Ki-Ho Kim, Sang Hee Vu, Tien Van Kim, Jae-Yean CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato |
title | CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato |
title_full | CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato |
title_fullStr | CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato |
title_full_unstemmed | CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato |
title_short | CRISPR-Cas9-based precise engineering of SlHyPRP1 protein towards multi-stress tolerance in tomato |
title_sort | crispr-cas9-based precise engineering of slhyprp1 protein towards multi-stress tolerance in tomato |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225705/ https://www.ncbi.nlm.nih.gov/pubmed/37255559 http://dx.doi.org/10.3389/fpls.2023.1186932 |
work_keys_str_mv | AT tranmilthi crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT songeonhui crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT songyoungjong crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT nguyennganthi crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT parkseonyeong crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT thachthanhvu crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT kimjihae crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT sungyeonwoo crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT dasswati crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT pramanikdibyajyoti crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT leejinsu crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT sonkiho crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT kimsanghee crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT vutienvan crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato AT kimjaeyean crisprcas9basedpreciseengineeringofslhyprp1proteintowardsmultistresstoleranceintomato |