Cargando…
Development of a machine learning framework for radiation biomarker discovery and absorbed dose prediction
BACKGROUND: Molecular radiation biomarkers are an emerging tool in radiation research with applications for cancer radiotherapy, radiation risk assessment, and even human space travel. However, biomarker screening in genome-wide expression datasets using conventional tools is time-consuming and unde...
Autores principales: | Andersson, Björn, Langen, Britta, Liu, Peidi, Dávila López, Marcela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225714/ https://www.ncbi.nlm.nih.gov/pubmed/37256187 http://dx.doi.org/10.3389/fonc.2023.1156009 |
Ejemplares similares
-
Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses
por: Rana, Sudha, et al.
Publicado: (2010) -
Editorial: Machine learning in radiation oncology
por: Zhao, Wei, et al.
Publicado: (2022) -
Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post-Radioembolization (90)Y PET
por: Srinivas, Shyam M., et al.
Publicado: (2014) -
Data-Driven Discovery of Immune Contexture Biomarkers
por: Schwen, Lars Ole, et al.
Publicado: (2018) -
Machine Learning in Radiation Oncology: Opportunities, Requirements, and Needs
por: Feng, Mary, et al.
Publicado: (2018)