Cargando…
A framework for the detection and attribution of biodiversity change
The causes of biodiversity change are of great scientific interest and central to policy efforts aimed at meeting biodiversity targets. Changes in species diversity and high rates of compositional turnover have been reported worldwide. In many cases, trends in biodiversity are detected, but these tr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225858/ https://www.ncbi.nlm.nih.gov/pubmed/37246383 http://dx.doi.org/10.1098/rstb.2022.0182 |
_version_ | 1785050464985808896 |
---|---|
author | Gonzalez, Andrew Chase, Jonathan M. O'Connor, Mary I. |
author_facet | Gonzalez, Andrew Chase, Jonathan M. O'Connor, Mary I. |
author_sort | Gonzalez, Andrew |
collection | PubMed |
description | The causes of biodiversity change are of great scientific interest and central to policy efforts aimed at meeting biodiversity targets. Changes in species diversity and high rates of compositional turnover have been reported worldwide. In many cases, trends in biodiversity are detected, but these trends are rarely causally attributed to possible drivers. A formal framework and guidelines for the detection and attribution of biodiversity change is needed. We propose an inferential framework to guide detection and attribution analyses, which identifies five steps—causal modelling, observation, estimation, detection and attribution—for robust attribution. This workflow provides evidence of biodiversity change in relation to hypothesized impacts of multiple potential drivers and can eliminate putative drivers from contention. The framework encourages a formal and reproducible statement of confidence about the role of drivers after robust methods for trend detection and attribution have been deployed. Confidence in trend attribution requires that data and analyses used in all steps of the framework follow best practices reducing uncertainty at each step. We illustrate these steps with examples. This framework could strengthen the bridge between biodiversity science and policy and support effective actions to halt biodiversity loss and the impacts this has on ecosystems. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’. |
format | Online Article Text |
id | pubmed-10225858 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-102258582023-05-30 A framework for the detection and attribution of biodiversity change Gonzalez, Andrew Chase, Jonathan M. O'Connor, Mary I. Philos Trans R Soc Lond B Biol Sci Articles The causes of biodiversity change are of great scientific interest and central to policy efforts aimed at meeting biodiversity targets. Changes in species diversity and high rates of compositional turnover have been reported worldwide. In many cases, trends in biodiversity are detected, but these trends are rarely causally attributed to possible drivers. A formal framework and guidelines for the detection and attribution of biodiversity change is needed. We propose an inferential framework to guide detection and attribution analyses, which identifies five steps—causal modelling, observation, estimation, detection and attribution—for robust attribution. This workflow provides evidence of biodiversity change in relation to hypothesized impacts of multiple potential drivers and can eliminate putative drivers from contention. The framework encourages a formal and reproducible statement of confidence about the role of drivers after robust methods for trend detection and attribution have been deployed. Confidence in trend attribution requires that data and analyses used in all steps of the framework follow best practices reducing uncertainty at each step. We illustrate these steps with examples. This framework could strengthen the bridge between biodiversity science and policy and support effective actions to halt biodiversity loss and the impacts this has on ecosystems. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’. The Royal Society 2023-07-17 2023-05-29 /pmc/articles/PMC10225858/ /pubmed/37246383 http://dx.doi.org/10.1098/rstb.2022.0182 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Gonzalez, Andrew Chase, Jonathan M. O'Connor, Mary I. A framework for the detection and attribution of biodiversity change |
title | A framework for the detection and attribution of biodiversity change |
title_full | A framework for the detection and attribution of biodiversity change |
title_fullStr | A framework for the detection and attribution of biodiversity change |
title_full_unstemmed | A framework for the detection and attribution of biodiversity change |
title_short | A framework for the detection and attribution of biodiversity change |
title_sort | framework for the detection and attribution of biodiversity change |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225858/ https://www.ncbi.nlm.nih.gov/pubmed/37246383 http://dx.doi.org/10.1098/rstb.2022.0182 |
work_keys_str_mv | AT gonzalezandrew aframeworkforthedetectionandattributionofbiodiversitychange AT chasejonathanm aframeworkforthedetectionandattributionofbiodiversitychange AT oconnormaryi aframeworkforthedetectionandattributionofbiodiversitychange AT gonzalezandrew frameworkforthedetectionandattributionofbiodiversitychange AT chasejonathanm frameworkforthedetectionandattributionofbiodiversitychange AT oconnormaryi frameworkforthedetectionandattributionofbiodiversitychange |