Cargando…
DGA3-Net: A parameter-efficient deep learning model for ASPECTS assessment for acute ischemic stroke using non-contrast computed tomography
Detecting the early signs of stroke using non-contrast computerized tomography (NCCT) is essential for the diagnosis of acute ischemic stroke (AIS). However, the hypoattenuation in NCCT is difficult to precisely identify, and accurate assessments of the Alberta Stroke Program Early CT Score (ASPECTS...
Autores principales: | Lin, Shih-Yen, Chiang, Pi-Ling, Chen, Meng-Hsiang, Lee, Meng-Yang, Lin, Wei-Che, Chen, Yong-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225927/ https://www.ncbi.nlm.nih.gov/pubmed/37224605 http://dx.doi.org/10.1016/j.nicl.2023.103441 |
Ejemplares similares
-
Deep Learning-Based Automatic Detection of ASPECTS in Acute Ischemic Stroke: Improving Stroke Assessment on CT Scans
por: Chiang, Pi-Ling, et al.
Publicado: (2022) -
Early detection of acute ischemic stroke using Contrast-enhanced electrical impedance tomography perfusion
por: Zhang, Weirui, et al.
Publicado: (2023) -
The disease and gene annotations (DGA): an annotation resource for human disease
por: Peng, Kai, et al.
Publicado: (2013) -
Influence of Oil Status on Membrane-Based Gas–Oil Separation in DGA
por: Chen, Tunan, et al.
Publicado: (2022) -
Validation of two automated ASPECTS software on non-contrast computed tomography scans of patients with acute ischemic stroke
por: Chen, Zhongping, et al.
Publicado: (2023)