Cargando…
Prediction of Non-Home Discharge Following Total Hip Arthroplasty in Geriatric Patients
INTRODUCTION: The majority of total hip arthroplasty (THA) patients are discharged home postoperatively, however, many still require continued medical care. We aimed to identify important characteristics that predict nonhome discharge in geriatric patients undergoing THA using machine learning. We h...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225957/ https://www.ncbi.nlm.nih.gov/pubmed/37255949 http://dx.doi.org/10.1177/21514593231179316 |
_version_ | 1785050485538947072 |
---|---|
author | Yeramosu, Teja Wait, Jacob Kates, Stephen L. Golladay, Gregory J. Patel, Nirav K. Satpathy, Jibanananda |
author_facet | Yeramosu, Teja Wait, Jacob Kates, Stephen L. Golladay, Gregory J. Patel, Nirav K. Satpathy, Jibanananda |
author_sort | Yeramosu, Teja |
collection | PubMed |
description | INTRODUCTION: The majority of total hip arthroplasty (THA) patients are discharged home postoperatively, however, many still require continued medical care. We aimed to identify important characteristics that predict nonhome discharge in geriatric patients undergoing THA using machine learning. We hypothesize that our analyses will identify variables associated with decreased functional status and overall health to be predictive of non-home discharge. MATERIALS AND METHODS: Elective, unilateral, THA patients above 65 years of age were isolated in the NSQIP database from 2018-2020. Demographic, pre-operative, and intraoperative variables were analyzed. After splitting the data into training (75%) and validation (25%) data sets, various machine learning models were used to predict non-home discharge. The model with the best area under the curve (AUC) was further assessed to identify the most important variables. RESULTS: In total, 19,840 geriatric patients undergoing THA were included in the final analyses, of which 5194 (26.2%) were discharged to a non-home setting. The RF model performed the best and identified age above 78 years (OR: 1.08 [1.07, 1.09], P < .0001), as the most important variable when predicting non-home discharge in geriatric patients with THA, followed by severe American Society of Anesthesiologists grade (OR: 1.94 [1.80, 2.10], P < .0001), operation time (OR: 1.01 [1.00, 1.02], P < .0001), anemia (OR: 2.20 [1.87, 2.58], P < .0001), and general anesthesia (OR: 1.64 [1.52, 1.79], P < .0001). Each of these variables was also significant in MLR analysis. The RF model displayed good discrimination with AUC = .831. DISCUSSION: The RF model revealed clinically important variables for assessing discharge disposition in geriatric patients undergoing THA, with the five most important factors being older age, severe ASA grade, longer operation time, anemia, and general anesthesia. CONCLUSIONS: With the rising emphasis on patient-centered care, incorporating models such as these may allow for preoperative risk factor mitigation and reductions in healthcare expenditure. |
format | Online Article Text |
id | pubmed-10225957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-102259572023-05-30 Prediction of Non-Home Discharge Following Total Hip Arthroplasty in Geriatric Patients Yeramosu, Teja Wait, Jacob Kates, Stephen L. Golladay, Gregory J. Patel, Nirav K. Satpathy, Jibanananda Geriatr Orthop Surg Rehabil Original Manuscript INTRODUCTION: The majority of total hip arthroplasty (THA) patients are discharged home postoperatively, however, many still require continued medical care. We aimed to identify important characteristics that predict nonhome discharge in geriatric patients undergoing THA using machine learning. We hypothesize that our analyses will identify variables associated with decreased functional status and overall health to be predictive of non-home discharge. MATERIALS AND METHODS: Elective, unilateral, THA patients above 65 years of age were isolated in the NSQIP database from 2018-2020. Demographic, pre-operative, and intraoperative variables were analyzed. After splitting the data into training (75%) and validation (25%) data sets, various machine learning models were used to predict non-home discharge. The model with the best area under the curve (AUC) was further assessed to identify the most important variables. RESULTS: In total, 19,840 geriatric patients undergoing THA were included in the final analyses, of which 5194 (26.2%) were discharged to a non-home setting. The RF model performed the best and identified age above 78 years (OR: 1.08 [1.07, 1.09], P < .0001), as the most important variable when predicting non-home discharge in geriatric patients with THA, followed by severe American Society of Anesthesiologists grade (OR: 1.94 [1.80, 2.10], P < .0001), operation time (OR: 1.01 [1.00, 1.02], P < .0001), anemia (OR: 2.20 [1.87, 2.58], P < .0001), and general anesthesia (OR: 1.64 [1.52, 1.79], P < .0001). Each of these variables was also significant in MLR analysis. The RF model displayed good discrimination with AUC = .831. DISCUSSION: The RF model revealed clinically important variables for assessing discharge disposition in geriatric patients undergoing THA, with the five most important factors being older age, severe ASA grade, longer operation time, anemia, and general anesthesia. CONCLUSIONS: With the rising emphasis on patient-centered care, incorporating models such as these may allow for preoperative risk factor mitigation and reductions in healthcare expenditure. SAGE Publications 2023-05-25 /pmc/articles/PMC10225957/ /pubmed/37255949 http://dx.doi.org/10.1177/21514593231179316 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Original Manuscript Yeramosu, Teja Wait, Jacob Kates, Stephen L. Golladay, Gregory J. Patel, Nirav K. Satpathy, Jibanananda Prediction of Non-Home Discharge Following Total Hip Arthroplasty in Geriatric Patients |
title | Prediction of Non-Home Discharge Following Total Hip Arthroplasty in Geriatric Patients |
title_full | Prediction of Non-Home Discharge Following Total Hip Arthroplasty in Geriatric Patients |
title_fullStr | Prediction of Non-Home Discharge Following Total Hip Arthroplasty in Geriatric Patients |
title_full_unstemmed | Prediction of Non-Home Discharge Following Total Hip Arthroplasty in Geriatric Patients |
title_short | Prediction of Non-Home Discharge Following Total Hip Arthroplasty in Geriatric Patients |
title_sort | prediction of non-home discharge following total hip arthroplasty in geriatric patients |
topic | Original Manuscript |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225957/ https://www.ncbi.nlm.nih.gov/pubmed/37255949 http://dx.doi.org/10.1177/21514593231179316 |
work_keys_str_mv | AT yeramosuteja predictionofnonhomedischargefollowingtotalhiparthroplastyingeriatricpatients AT waitjacob predictionofnonhomedischargefollowingtotalhiparthroplastyingeriatricpatients AT katesstephenl predictionofnonhomedischargefollowingtotalhiparthroplastyingeriatricpatients AT golladaygregoryj predictionofnonhomedischargefollowingtotalhiparthroplastyingeriatricpatients AT patelniravk predictionofnonhomedischargefollowingtotalhiparthroplastyingeriatricpatients AT satpathyjibanananda predictionofnonhomedischargefollowingtotalhiparthroplastyingeriatricpatients |