Cargando…
Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25
[Image: see text] Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226111/ https://www.ncbi.nlm.nih.gov/pubmed/37255923 http://dx.doi.org/10.1021/acs.jpcc.3c00870 |
_version_ | 1785050511883370496 |
---|---|
author | Erodici, Matthew P. Mai, Thuc T. Xie, Lilia S. Li, Simon Fender, Shannon S. Husremović, Samra Gonzalez, Oscar Hight Walker, Angela R. Bediako, D. Kwabena |
author_facet | Erodici, Matthew P. Mai, Thuc T. Xie, Lilia S. Li, Simon Fender, Shannon S. Husremović, Samra Gonzalez, Oscar Hight Walker, Angela R. Bediako, D. Kwabena |
author_sort | Erodici, Matthew P. |
collection | PubMed |
description | [Image: see text] Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant, host lattice, and relative stoichiometry. The distribution of these intercalant ions across given crystals, however, is less well defined—particularly away from ideal packing stoichiometries—and a convenient probe to assess potential longer-range ordering of intercalants is lacking. Here, we demonstrate that confocal Raman spectroscopy is a powerful tool for mapping the onset of intercalant superlattice formation in Fe-intercalated NbSe(2) (Fe(x)NbSe(2)) for 0.14 ≤ x < 0.25. We use single-crystal X-ray diffraction to confirm the presence of longer-range intercalant superstructure and employ polarization-, temperature-, and magnetic field-dependent Raman measurements to examine both the symmetry of emergent phonon modes in the intercalated material and potential magnetoelastic coupling. Magnetometry measurements further indicate a correlation between the onset of magnetic ordering and the relative degree of intercalant superlattice formation. These results show Raman spectroscopy to be an expedient, local probe for mapping intercalant ordering in this class of magnetic materials. |
format | Online Article Text |
id | pubmed-10226111 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-102261112023-05-30 Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25 Erodici, Matthew P. Mai, Thuc T. Xie, Lilia S. Li, Simon Fender, Shannon S. Husremović, Samra Gonzalez, Oscar Hight Walker, Angela R. Bediako, D. Kwabena J Phys Chem C Nanomater Interfaces [Image: see text] Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant, host lattice, and relative stoichiometry. The distribution of these intercalant ions across given crystals, however, is less well defined—particularly away from ideal packing stoichiometries—and a convenient probe to assess potential longer-range ordering of intercalants is lacking. Here, we demonstrate that confocal Raman spectroscopy is a powerful tool for mapping the onset of intercalant superlattice formation in Fe-intercalated NbSe(2) (Fe(x)NbSe(2)) for 0.14 ≤ x < 0.25. We use single-crystal X-ray diffraction to confirm the presence of longer-range intercalant superstructure and employ polarization-, temperature-, and magnetic field-dependent Raman measurements to examine both the symmetry of emergent phonon modes in the intercalated material and potential magnetoelastic coupling. Magnetometry measurements further indicate a correlation between the onset of magnetic ordering and the relative degree of intercalant superlattice formation. These results show Raman spectroscopy to be an expedient, local probe for mapping intercalant ordering in this class of magnetic materials. American Chemical Society 2023-05-10 /pmc/articles/PMC10226111/ /pubmed/37255923 http://dx.doi.org/10.1021/acs.jpcc.3c00870 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Erodici, Matthew P. Mai, Thuc T. Xie, Lilia S. Li, Simon Fender, Shannon S. Husremović, Samra Gonzalez, Oscar Hight Walker, Angela R. Bediako, D. Kwabena Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25 |
title | Bridging Structure,
Magnetism, and Disorder in Iron-Intercalated
Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25 |
title_full | Bridging Structure,
Magnetism, and Disorder in Iron-Intercalated
Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25 |
title_fullStr | Bridging Structure,
Magnetism, and Disorder in Iron-Intercalated
Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25 |
title_full_unstemmed | Bridging Structure,
Magnetism, and Disorder in Iron-Intercalated
Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25 |
title_short | Bridging Structure,
Magnetism, and Disorder in Iron-Intercalated
Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25 |
title_sort | bridging structure,
magnetism, and disorder in iron-intercalated
niobium diselenide, fe(x)nbse(2), below x = 0.25 |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226111/ https://www.ncbi.nlm.nih.gov/pubmed/37255923 http://dx.doi.org/10.1021/acs.jpcc.3c00870 |
work_keys_str_mv | AT erodicimatthewp bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025 AT maithuct bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025 AT xielilias bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025 AT lisimon bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025 AT fendershannons bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025 AT husremovicsamra bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025 AT gonzalezoscar bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025 AT hightwalkerangelar bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025 AT bediakodkwabena bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025 |