Cargando…

Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25

[Image: see text] Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant,...

Descripción completa

Detalles Bibliográficos
Autores principales: Erodici, Matthew P., Mai, Thuc T., Xie, Lilia S., Li, Simon, Fender, Shannon S., Husremović, Samra, Gonzalez, Oscar, Hight Walker, Angela R., Bediako, D. Kwabena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226111/
https://www.ncbi.nlm.nih.gov/pubmed/37255923
http://dx.doi.org/10.1021/acs.jpcc.3c00870
_version_ 1785050511883370496
author Erodici, Matthew P.
Mai, Thuc T.
Xie, Lilia S.
Li, Simon
Fender, Shannon S.
Husremović, Samra
Gonzalez, Oscar
Hight Walker, Angela R.
Bediako, D. Kwabena
author_facet Erodici, Matthew P.
Mai, Thuc T.
Xie, Lilia S.
Li, Simon
Fender, Shannon S.
Husremović, Samra
Gonzalez, Oscar
Hight Walker, Angela R.
Bediako, D. Kwabena
author_sort Erodici, Matthew P.
collection PubMed
description [Image: see text] Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant, host lattice, and relative stoichiometry. The distribution of these intercalant ions across given crystals, however, is less well defined—particularly away from ideal packing stoichiometries—and a convenient probe to assess potential longer-range ordering of intercalants is lacking. Here, we demonstrate that confocal Raman spectroscopy is a powerful tool for mapping the onset of intercalant superlattice formation in Fe-intercalated NbSe(2) (Fe(x)NbSe(2)) for 0.14 ≤ x < 0.25. We use single-crystal X-ray diffraction to confirm the presence of longer-range intercalant superstructure and employ polarization-, temperature-, and magnetic field-dependent Raman measurements to examine both the symmetry of emergent phonon modes in the intercalated material and potential magnetoelastic coupling. Magnetometry measurements further indicate a correlation between the onset of magnetic ordering and the relative degree of intercalant superlattice formation. These results show Raman spectroscopy to be an expedient, local probe for mapping intercalant ordering in this class of magnetic materials.
format Online
Article
Text
id pubmed-10226111
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-102261112023-05-30 Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25 Erodici, Matthew P. Mai, Thuc T. Xie, Lilia S. Li, Simon Fender, Shannon S. Husremović, Samra Gonzalez, Oscar Hight Walker, Angela R. Bediako, D. Kwabena J Phys Chem C Nanomater Interfaces [Image: see text] Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant, host lattice, and relative stoichiometry. The distribution of these intercalant ions across given crystals, however, is less well defined—particularly away from ideal packing stoichiometries—and a convenient probe to assess potential longer-range ordering of intercalants is lacking. Here, we demonstrate that confocal Raman spectroscopy is a powerful tool for mapping the onset of intercalant superlattice formation in Fe-intercalated NbSe(2) (Fe(x)NbSe(2)) for 0.14 ≤ x < 0.25. We use single-crystal X-ray diffraction to confirm the presence of longer-range intercalant superstructure and employ polarization-, temperature-, and magnetic field-dependent Raman measurements to examine both the symmetry of emergent phonon modes in the intercalated material and potential magnetoelastic coupling. Magnetometry measurements further indicate a correlation between the onset of magnetic ordering and the relative degree of intercalant superlattice formation. These results show Raman spectroscopy to be an expedient, local probe for mapping intercalant ordering in this class of magnetic materials. American Chemical Society 2023-05-10 /pmc/articles/PMC10226111/ /pubmed/37255923 http://dx.doi.org/10.1021/acs.jpcc.3c00870 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Erodici, Matthew P.
Mai, Thuc T.
Xie, Lilia S.
Li, Simon
Fender, Shannon S.
Husremović, Samra
Gonzalez, Oscar
Hight Walker, Angela R.
Bediako, D. Kwabena
Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25
title Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25
title_full Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25
title_fullStr Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25
title_full_unstemmed Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25
title_short Bridging Structure, Magnetism, and Disorder in Iron-Intercalated Niobium Diselenide, Fe(x)NbSe(2), below x = 0.25
title_sort bridging structure, magnetism, and disorder in iron-intercalated niobium diselenide, fe(x)nbse(2), below x = 0.25
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226111/
https://www.ncbi.nlm.nih.gov/pubmed/37255923
http://dx.doi.org/10.1021/acs.jpcc.3c00870
work_keys_str_mv AT erodicimatthewp bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025
AT maithuct bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025
AT xielilias bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025
AT lisimon bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025
AT fendershannons bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025
AT husremovicsamra bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025
AT gonzalezoscar bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025
AT hightwalkerangelar bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025
AT bediakodkwabena bridgingstructuremagnetismanddisorderinironintercalatedniobiumdiselenidefexnbse2belowx025