Cargando…
Automated screening of computed tomography using weakly supervised anomaly detection
BACKGROUND: Current artificial intelligence studies for supporting CT screening tasks depend on either supervised learning or detecting anomalies. However, the former involves a heavy annotation workload owing to requiring many slice-wise annotations (ground truth labels); the latter is promising, b...
Autores principales: | Hibi, Atsuhiro, Cusimano, Michael D., Bilbily, Alexander, Krishnan, Rahul G., Tyrrell, Pascal N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226438/ https://www.ncbi.nlm.nih.gov/pubmed/37247113 http://dx.doi.org/10.1007/s11548-023-02965-4 |
Ejemplares similares
-
Automated identification and quantification of traumatic brain injury from CT scans: Are we there yet?
por: Hibi, Atsuhiro, et al.
Publicado: (2022) -
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Saab, Khaled, et al.
Publicado: (2020) -
Weakly Supervised Video Anomaly Detection Based on 3D Convolution and LSTM
por: Ma, Zhen, et al.
Publicado: (2021) -
CNN-ViT Supported Weakly-Supervised Video Segment Level Anomaly Detection
por: Sharif, Md. Haidar, et al.
Publicado: (2023) -
Rule-Enhanced Active Learning for Semi-Automated Weak Supervision
por: Kartchner, David, et al.
Publicado: (2022)