Cargando…
Correction to: Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review
Autores principales: | Sanmarchi, Francesco, Fanconi, Claudio, Golinelli, Davide, Gori, Davide, Hernandez-Boussard, Tina, Capodici, Angelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226908/ https://www.ncbi.nlm.nih.gov/pubmed/36877370 http://dx.doi.org/10.1007/s40620-023-01609-9 |
Ejemplares similares
-
Predict, diagnose, and treat chronic kidney disease with machine learning: a systematic literature review
por: Sanmarchi, Francesco, et al.
Publicado: (2023) -
Biased, wrong and counterfeited evidences published during the COVID-19 pandemic, a systematic review of retracted COVID-19 papers
por: Capodici, Angelo, et al.
Publicado: (2022) -
A Bayesian approach to predictive uncertainty in chemotherapy patients at risk of acute care utilization
por: Fanconi, Claudio, et al.
Publicado: (2023) -
Exploring the Gap Between Excess Mortality and COVID-19 Deaths in 67 Countries
por: Sanmarchi, Francesco, et al.
Publicado: (2021) -
Variations of the quality of care during the COVID-19 pandemic affected the mortality rate of non-COVID-19 patients with hip fracture
por: Golinelli, Davide, et al.
Publicado: (2022)