Cargando…
Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network
The enantioseparation of chiral molecules is a crucial and challenging task in the field of experimental chemistry, often requiring extensive trial and error with different experimental settings. To overcome this challenge, here we show a research framework that employs machine learning techniques t...
Autores principales: | Xu, Hao, Lin, Jinglong, Zhang, Dongxiao, Mo, Fanyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227049/ https://www.ncbi.nlm.nih.gov/pubmed/37248214 http://dx.doi.org/10.1038/s41467-023-38853-3 |
Ejemplares similares
-
Progress in the Enantioseparation of β-Blockers by Chromatographic Methods
por: Yang, Yiwen, et al.
Publicado: (2021) -
Mining Chromatographic Enantioseparation Data Using Matched Molecular Pair Analysis
por: Sheridan, Robert P., et al.
Publicado: (2016) -
Liquid Chromatographic Enantioseparations Utilizing Chiral Stationary Phases Based on Crown Ethers and Cyclofructans
por: Berkecz, Róbert, et al.
Publicado: (2021) -
Predicting reversed-phase liquid chromatographic retention times of pesticides by deep neural networks
por: Parinet, Julien
Publicado: (2021) -
Retention Time Trajectory Matching for Peak Identification in Chromatographic Analysis
por: Zang, Wenzhe, et al.
Publicado: (2023)