Cargando…

Retention time prediction for chromatographic enantioseparation by quantile geometry-enhanced graph neural network

The enantioseparation of chiral molecules is a crucial and challenging task in the field of experimental chemistry, often requiring extensive trial and error with different experimental settings. To overcome this challenge, here we show a research framework that employs machine learning techniques t...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Hao, Lin, Jinglong, Zhang, Dongxiao, Mo, Fanyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227049/
https://www.ncbi.nlm.nih.gov/pubmed/37248214
http://dx.doi.org/10.1038/s41467-023-38853-3

Ejemplares similares