Cargando…
Deep learning generates synthetic cancer histology for explainability and education
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explai...
Autores principales: | Dolezal, James M., Wolk, Rachelle, Hieromnimon, Hanna M., Howard, Frederick M., Srisuwananukorn, Andrew, Karpeyev, Dmitry, Ramesh, Siddhi, Kochanny, Sara, Kwon, Jung Woo, Agni, Meghana, Simon, Richard C., Desai, Chandni, Kherallah, Raghad, Nguyen, Tung D., Schulte, Jefree J., Cole, Kimberly, Khramtsova, Galina, Garassino, Marina Chiara, Husain, Aliya N., Li, Huihua, Grossman, Robert, Cipriani, Nicole A., Pearson, Alexander T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227067/ https://www.ncbi.nlm.nih.gov/pubmed/37248379 http://dx.doi.org/10.1038/s41698-023-00399-4 |
Ejemplares similares
-
Uncertainty-informed deep learning models enable high-confidence predictions for digital histopathology
por: Dolezal, James M., et al.
Publicado: (2022) -
Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence
por: Howard, Frederick M., et al.
Publicado: (2023) -
The impact of site-specific digital histology signatures on deep learning model accuracy and bias
por: Howard, Frederick M., et al.
Publicado: (2021) -
Update on the pathologic diagnosis of malignant mesothelioma
por: Schulte, Jefree J., et al.
Publicado: (2020) -
Application of immunohistochemistry in diagnosis and management of malignant mesothelioma
por: Chapel, David B., et al.
Publicado: (2020)