Cargando…

The structure of [Formula: see text] -maximal cofinitary groups

We study [Formula: see text] -maximal cofinitary groups for [Formula: see text] regular uncountable, [Formula: see text] 1. Any [Formula: see text] -maximal cofinitary group has [Formula: see text] many orbits under the natural group action of [Formula: see text] on [Formula: see text] . 2. If [Form...

Descripción completa

Detalles Bibliográficos
Autores principales: Fischer, Vera, Switzer, Corey Bacal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227154/
https://www.ncbi.nlm.nih.gov/pubmed/37260527
http://dx.doi.org/10.1007/s00153-022-00859-x
_version_ 1785050708627685376
author Fischer, Vera
Switzer, Corey Bacal
author_facet Fischer, Vera
Switzer, Corey Bacal
author_sort Fischer, Vera
collection PubMed
description We study [Formula: see text] -maximal cofinitary groups for [Formula: see text] regular uncountable, [Formula: see text] 1. Any [Formula: see text] -maximal cofinitary group has [Formula: see text] many orbits under the natural group action of [Formula: see text] on [Formula: see text] . 2. If [Formula: see text] then any partition of [Formula: see text] into less than [Formula: see text] many sets can be realized as the orbits of a [Formula: see text] -maximal cofinitary group. 3. For any regular [Formula: see text] it is consistent that there is a [Formula: see text] -maximal cofinitary group which is universal for groups of size [Formula: see text] . If we only require the group to be universal for groups of size [Formula: see text] then this follows from [Formula: see text] . .
format Online
Article
Text
id pubmed-10227154
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-102271542023-05-31 The structure of [Formula: see text] -maximal cofinitary groups Fischer, Vera Switzer, Corey Bacal Arch Math Log Article We study [Formula: see text] -maximal cofinitary groups for [Formula: see text] regular uncountable, [Formula: see text] 1. Any [Formula: see text] -maximal cofinitary group has [Formula: see text] many orbits under the natural group action of [Formula: see text] on [Formula: see text] . 2. If [Formula: see text] then any partition of [Formula: see text] into less than [Formula: see text] many sets can be realized as the orbits of a [Formula: see text] -maximal cofinitary group. 3. For any regular [Formula: see text] it is consistent that there is a [Formula: see text] -maximal cofinitary group which is universal for groups of size [Formula: see text] . If we only require the group to be universal for groups of size [Formula: see text] then this follows from [Formula: see text] . . Springer Berlin Heidelberg 2022-12-04 2023 /pmc/articles/PMC10227154/ /pubmed/37260527 http://dx.doi.org/10.1007/s00153-022-00859-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Fischer, Vera
Switzer, Corey Bacal
The structure of [Formula: see text] -maximal cofinitary groups
title The structure of [Formula: see text] -maximal cofinitary groups
title_full The structure of [Formula: see text] -maximal cofinitary groups
title_fullStr The structure of [Formula: see text] -maximal cofinitary groups
title_full_unstemmed The structure of [Formula: see text] -maximal cofinitary groups
title_short The structure of [Formula: see text] -maximal cofinitary groups
title_sort structure of [formula: see text] -maximal cofinitary groups
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227154/
https://www.ncbi.nlm.nih.gov/pubmed/37260527
http://dx.doi.org/10.1007/s00153-022-00859-x
work_keys_str_mv AT fischervera thestructureofformulaseetextmaximalcofinitarygroups
AT switzercoreybacal thestructureofformulaseetextmaximalcofinitarygroups
AT fischervera structureofformulaseetextmaximalcofinitarygroups
AT switzercoreybacal structureofformulaseetextmaximalcofinitarygroups