Cargando…
Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae)
Cotinus is an oligo‐specific ornamentally valuable genus with a disjunct distribution in the Northern Hemisphere. Traditionally, the taxonomy of Cotinus was mainly based on leaf morphological characteristics. However, the limited availability of genomic information greatly hindered the study of mole...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227175/ https://www.ncbi.nlm.nih.gov/pubmed/37261318 http://dx.doi.org/10.1002/ece3.10134 |
_version_ | 1785050712397316096 |
---|---|
author | Liu, Qiaoyun Yang, Nan Dong, Wenpan Zhao, Liangcheng |
author_facet | Liu, Qiaoyun Yang, Nan Dong, Wenpan Zhao, Liangcheng |
author_sort | Liu, Qiaoyun |
collection | PubMed |
description | Cotinus is an oligo‐specific ornamentally valuable genus with a disjunct distribution in the Northern Hemisphere. Traditionally, the taxonomy of Cotinus was mainly based on leaf morphological characteristics. However, the limited availability of genomic information greatly hindered the study of molecular evolution and phylogeny of this genus. This study sequenced the chloroplast (cp) genomes of all currently recognized taxa of Cotinus, including three species and four varieties. A comparative analysis was performed to investigate their cp genome characteristics and evolution. Furthermore, we inferred the phylogenetic relationships of Cotinus based on whole cp genomes, protein‐coding genes, and nuclear ITS data. All cp genomes exhibited a typical quadripartite structure with genome sizes ranging from 158,865 to 160,155 bp. A total of 113–114 genes were identified in the genomes. Seven non‐coding and four coding regions were identified as the most divergent hotspots for potential molecular barcodes and phylogenetic markers. Selection pressure analysis showed that there had been positive selection on genes matK and rps8 in the Cotinus cp genomes. Phylogenetic results confirmed that Cotinus is a monophyletic group but the widely distributed species Cotinus coggygria is not monophyletic. The divergence‐time analysis suggested that Cotinus underwent an evolutionary divergence from the middle Eocene and rapid adaptive radiation from the middle Miocene. This study revealed new insights into the cp genome evolution and phylogeny of Cotinus and related taxa. |
format | Online Article Text |
id | pubmed-10227175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102271752023-05-31 Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae) Liu, Qiaoyun Yang, Nan Dong, Wenpan Zhao, Liangcheng Ecol Evol Research Articles Cotinus is an oligo‐specific ornamentally valuable genus with a disjunct distribution in the Northern Hemisphere. Traditionally, the taxonomy of Cotinus was mainly based on leaf morphological characteristics. However, the limited availability of genomic information greatly hindered the study of molecular evolution and phylogeny of this genus. This study sequenced the chloroplast (cp) genomes of all currently recognized taxa of Cotinus, including three species and four varieties. A comparative analysis was performed to investigate their cp genome characteristics and evolution. Furthermore, we inferred the phylogenetic relationships of Cotinus based on whole cp genomes, protein‐coding genes, and nuclear ITS data. All cp genomes exhibited a typical quadripartite structure with genome sizes ranging from 158,865 to 160,155 bp. A total of 113–114 genes were identified in the genomes. Seven non‐coding and four coding regions were identified as the most divergent hotspots for potential molecular barcodes and phylogenetic markers. Selection pressure analysis showed that there had been positive selection on genes matK and rps8 in the Cotinus cp genomes. Phylogenetic results confirmed that Cotinus is a monophyletic group but the widely distributed species Cotinus coggygria is not monophyletic. The divergence‐time analysis suggested that Cotinus underwent an evolutionary divergence from the middle Eocene and rapid adaptive radiation from the middle Miocene. This study revealed new insights into the cp genome evolution and phylogeny of Cotinus and related taxa. John Wiley and Sons Inc. 2023-05-29 /pmc/articles/PMC10227175/ /pubmed/37261318 http://dx.doi.org/10.1002/ece3.10134 Text en © 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Liu, Qiaoyun Yang, Nan Dong, Wenpan Zhao, Liangcheng Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae) |
title | Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae) |
title_full | Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae) |
title_fullStr | Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae) |
title_full_unstemmed | Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae) |
title_short | Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae) |
title_sort | molecular evolution and phylogenomic analysis of complete chloroplast genomes of cotinus (anacardiaceae) |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227175/ https://www.ncbi.nlm.nih.gov/pubmed/37261318 http://dx.doi.org/10.1002/ece3.10134 |
work_keys_str_mv | AT liuqiaoyun molecularevolutionandphylogenomicanalysisofcompletechloroplastgenomesofcotinusanacardiaceae AT yangnan molecularevolutionandphylogenomicanalysisofcompletechloroplastgenomesofcotinusanacardiaceae AT dongwenpan molecularevolutionandphylogenomicanalysisofcompletechloroplastgenomesofcotinusanacardiaceae AT zhaoliangcheng molecularevolutionandphylogenomicanalysisofcompletechloroplastgenomesofcotinusanacardiaceae |