Cargando…
Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator
BACKGROUND: Diagnosis of shockable rhythms leading to defibrillation remains integral to improving out‐of‐hospital cardiac arrest outcomes. New machine learning techniques have emerged to diagnose arrhythmias on ECGs. In out‐of‐hospital cardiac arrest, an algorithm within an automated external defib...
Autores principales: | Shen, Christine P., Freed, Benjamin C., Walter, David P., Perry, James C., Barakat, Amr F., Elashery, Ahmad Ramy A., Shah, Kevin S., Kutty, Shelby, McGillion, Michael, Ng, Fu Siong, Khedraki, Rola, Nayak, Keshav R., Rogers, John D., Bhavnani, Sanjeev P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227259/ https://www.ncbi.nlm.nih.gov/pubmed/36942628 http://dx.doi.org/10.1161/JAHA.122.026974 |
Ejemplares similares
-
Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for Detection of Shockable and Non-Shockable Rhythms
por: Krasteva, Vessela, et al.
Publicado: (2020) -
Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators
por: Figuera, Carlos, et al.
Publicado: (2016) -
High accuracy distinction of shockable and non-shockable arrhythmias in abnormal classes through wavelet transform with pseudo differential like operators
por: Rahman, Md. Masudur, et al.
Publicado: (2023) -
Epinephrine before defibrillation in patients with shockable in-hospital cardiac arrest: propensity matched analysis
por: Evans, Erin, et al.
Publicado: (2021) -
Epinephrine before defibrillation in patients with shockable in-hospital cardiac arrest: propensity matched analysis
Publicado: (2022)