Cargando…
Powder plasma spheroidization treatment and the characterization of microstructure and mechanical properties of SS 316L powder and L-PBF builds
A plasma spheroidization treatment was applied to stock stainless steel 316L powder for additive manufacturing. The normal and treated powders were compared both in the powder state as well as in the resulting laser powder bed fusion (L-PBF) builds. The plasma spheroidization process slightly increa...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227344/ https://www.ncbi.nlm.nih.gov/pubmed/37260881 http://dx.doi.org/10.1016/j.heliyon.2023.e16583 |
Sumario: | A plasma spheroidization treatment was applied to stock stainless steel 316L powder for additive manufacturing. The normal and treated powders were compared both in the powder state as well as in the resulting laser powder bed fusion (L-PBF) builds. The plasma spheroidization process slightly increased treated powder aspect ratio and sphericity and shifted the size distribution to larger diameters relative to the normal powder. The normal powder was austenitic in nature whereas the plasma spheroidization process introduced a small fraction (∼3.5 vol %) of ferrite in the treated powder. Ferrite in the powder was not retained in the printed samples and was not shown to negatively affect the build quality. Porosity areal fraction was generally smaller in the treated powder builds. The normal powder builds had a 6% higher yield strength than treated, however the scatter was significantly larger in the 45° and horizontal orientations compared to the treated powder builds. |
---|