Cargando…
Multi-centre radiomics for prediction of recurrence following radical radiotherapy for head and neck cancers: Consequences of feature selection, machine learning classifiers and batch-effect harmonization
BACKGROUND AND PURPOSE: Radiomics models trained with limited single institution data are often not reproducible and generalisable. We developed radiomics models that predict loco-regional recurrence within two years of radiotherapy with private and public datasets and their combinations, to simulat...
Autores principales: | Varghese, Amal Joseph, Gouthamchand, Varsha, Sasidharan, Balu Krishna, Wee, Leonard, Sidhique, Sharief K, Rao, Julia Priyadarshini, Dekker, Andre, Hoebers, Frank, Devakumar, Devadhas, Irodi, Aparna, Balasingh, Timothy Peace, Godson, Henry Finlay, Joel, T, Mathew, Manu, Gunasingam Isiah, Rajesh, Pavamani, Simon Pradeep, Thomas, Hannah Mary T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227455/ https://www.ncbi.nlm.nih.gov/pubmed/37260438 http://dx.doi.org/10.1016/j.phro.2023.100450 |
Ejemplares similares
-
Framework for Machine Learning of CT and PET Radiomics to Predict Local Failure after Radiotherapy in Locally Advanced Head and Neck Cancers
por: Devakumar, Devadhas, et al.
Publicado: (2021) -
Feasibility, safety and oncological outcomes of minimally invasive oesophagectomy following neoadjuvant chemoradiotherapy for oesophageal squamous cell carcinoma – Experience from a tertiary care centre
por: Surendran, Suraj, et al.
Publicado: (2022) -
Young patient with generalized lymphangiomatosis: Differentiating the differential
por: Putta, Tharani, et al.
Publicado: (2016) -
Congenital Nasal Pyriform Aperture Stenosis: Same CT Dimensions, Varied Scenarios
por: Naina, Picardo, et al.
Publicado: (2022) -
IgG4-related disease with sinonasal involvement: A case series
por: Prabhu, Shailesh M, et al.
Publicado: (2014)