Cargando…

Quantitative evaluation of H-donating abilities of C(sp(3))–H bonds of nitrogen-containing heterocycles in hydrogen atom transfer reaction

Nitrogen-containing heterocycles are an important class of antioxidants, and their reactivity and selectivity in hydrogen atom reactions have attracted significant interest from chemists. In this work, the kinetics of hydrogen atom transfer reactions from C(sp(3))–H bonds of 28 nitrogen-containing h...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Yan-Hua, Jia, Taixuan, Shen, Guang-Bin, Zhu, Xiao-Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227530/
https://www.ncbi.nlm.nih.gov/pubmed/37260565
http://dx.doi.org/10.1039/d3ra02211k
Descripción
Sumario:Nitrogen-containing heterocycles are an important class of antioxidants, and their reactivity and selectivity in hydrogen atom reactions have attracted significant interest from chemists. In this work, the kinetics of hydrogen atom transfer reactions from C(sp(3))–H bonds of 28 nitrogen-containing heterocycles, oxygen-containing heterocycles, alicyclic amines and cycloalkanes, which were denoted as XH, to the CumO˙ radical, were investigated. The characteristic physical parameter of the substrate, i.e., the thermo–kinetic parameter ΔG(≠o)(XH), was determined using the kinetic equation [ΔG(≠)(XH/Y) = ΔG(≠o)(XH) + ΔG(≠o)(Y)] to quantitatively evaluate the H-donating ability of XH. The effects of the substrate structure, substituent attached to the nitrogen atom, and ring size on the H-donating ability were discussed carefully. By comparing the H-donating abilities of cycloalkanes, alicyclic amines and nitrogen/oxygen-containing heterocycles, the influence of the introduction of N, O, or carbonyl groups in the carbon ring on the H-donating ability of C(sp(3))–H bond was determined. The electronic, steric and stereo-electronic effects of the groups were also discussed. Herein, we not only quantitatively determined the H-donating ability of the substrate, but also provided ideas for the synthesis of new antioxidants.