Cargando…
Comparison of machine learning models based on multi-parametric magnetic resonance imaging and ultrasound videos for the prediction of prostate cancer
OBJECTIVE: To establish machine learning (ML) prediction models for prostate cancer (PCa) using transrectal ultrasound videos and multi-parametric magnetic resonance imaging (mpMRI) and compare their diagnostic performance. MATERIALS AND METHODS: We systematically collated the data of 383 patients,...
Autores principales: | Qi, Xiaoyang, Wang, Kai, Feng, Bojian, Sun, Xingbo, Yang, Jie, Hu, Zhengbiao, Zhang, Maoliang, Lv, Cheng, Jin, Liyuan, Zhou, Lingyan, Wang, Zhengping, Yao, Jincao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227569/ https://www.ncbi.nlm.nih.gov/pubmed/37260984 http://dx.doi.org/10.3389/fonc.2023.1157949 |
Ejemplares similares
-
Machine learning prediction of prostate cancer from transrectal ultrasound video clips
por: Wang, Kai, et al.
Publicado: (2022) -
Value of machine learning-based transrectal multimodal ultrasound combined with PSA-related indicators in the diagnosis of clinically significant prostate cancer
por: Zhang, Maoliang, et al.
Publicado: (2023) -
Value of deep learning models based on ultrasonic dynamic videos for distinguishing thyroid nodules
por: Ni, Chen, et al.
Publicado: (2023) -
Will Multi-Parametric Magnetic Resonance Imaging be the Future Tool to Detect Clinically Significant Prostate Cancer?
por: Giannarini, Gianluca, et al.
Publicado: (2014) -
Prostate multi-parametric magnetic resonance imaging appearance of diffuse adenosis of the peripheral zone (DAPZ)
por: Lowe, Avanka W., et al.
Publicado: (2022)