Cargando…

Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders

INTRODUCTION: This study examines the performance of active learning-aided systematic reviews using a deep learning-based model compared to traditional machine learning approaches, and explores the potential benefits of model-switching strategies. METHODS: Comprising four parts, the study: 1) analyz...

Descripción completa

Detalles Bibliográficos
Autores principales: Teijema, Jelle Jasper, Hofstee, Laura, Brouwer, Marlies, de Bruin, Jonathan, Ferdinands, Gerbrich, de Boer, Jan, Vizan, Pablo, van den Brand, Sofie, Bockting, Claudi, van de Schoot, Rens, Bagheri, Ayoub
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227618/
https://www.ncbi.nlm.nih.gov/pubmed/37260784
http://dx.doi.org/10.3389/frma.2023.1178181
_version_ 1785050811862089728
author Teijema, Jelle Jasper
Hofstee, Laura
Brouwer, Marlies
de Bruin, Jonathan
Ferdinands, Gerbrich
de Boer, Jan
Vizan, Pablo
van den Brand, Sofie
Bockting, Claudi
van de Schoot, Rens
Bagheri, Ayoub
author_facet Teijema, Jelle Jasper
Hofstee, Laura
Brouwer, Marlies
de Bruin, Jonathan
Ferdinands, Gerbrich
de Boer, Jan
Vizan, Pablo
van den Brand, Sofie
Bockting, Claudi
van de Schoot, Rens
Bagheri, Ayoub
author_sort Teijema, Jelle Jasper
collection PubMed
description INTRODUCTION: This study examines the performance of active learning-aided systematic reviews using a deep learning-based model compared to traditional machine learning approaches, and explores the potential benefits of model-switching strategies. METHODS: Comprising four parts, the study: 1) analyzes the performance and stability of active learning-aided systematic review; 2) implements a convolutional neural network classifier; 3) compares classifier and feature extractor performance; and 4) investigates the impact of model-switching strategies on review performance. RESULTS: Lighter models perform well in early simulation stages, while other models show increased performance in later stages. Model-switching strategies generally improve performance compared to using the default classification model alone. DISCUSSION: The study's findings support the use of model-switching strategies in active learning-based systematic review workflows. It is advised to begin the review with a light model, such as Naïve Bayes or logistic regression, and switch to a heavier classification model based on a heuristic rule when needed.
format Online
Article
Text
id pubmed-10227618
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-102276182023-05-31 Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders Teijema, Jelle Jasper Hofstee, Laura Brouwer, Marlies de Bruin, Jonathan Ferdinands, Gerbrich de Boer, Jan Vizan, Pablo van den Brand, Sofie Bockting, Claudi van de Schoot, Rens Bagheri, Ayoub Front Res Metr Anal Research Metrics and Analytics INTRODUCTION: This study examines the performance of active learning-aided systematic reviews using a deep learning-based model compared to traditional machine learning approaches, and explores the potential benefits of model-switching strategies. METHODS: Comprising four parts, the study: 1) analyzes the performance and stability of active learning-aided systematic review; 2) implements a convolutional neural network classifier; 3) compares classifier and feature extractor performance; and 4) investigates the impact of model-switching strategies on review performance. RESULTS: Lighter models perform well in early simulation stages, while other models show increased performance in later stages. Model-switching strategies generally improve performance compared to using the default classification model alone. DISCUSSION: The study's findings support the use of model-switching strategies in active learning-based systematic review workflows. It is advised to begin the review with a light model, such as Naïve Bayes or logistic regression, and switch to a heavier classification model based on a heuristic rule when needed. Frontiers Media S.A. 2023-05-16 /pmc/articles/PMC10227618/ /pubmed/37260784 http://dx.doi.org/10.3389/frma.2023.1178181 Text en Copyright © 2023 Teijema, Hofstee, Brouwer, de Bruin, Ferdinands, de Boer, Vizan, van den Brand, Bockting, van de Schoot and Bagheri. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Research Metrics and Analytics
Teijema, Jelle Jasper
Hofstee, Laura
Brouwer, Marlies
de Bruin, Jonathan
Ferdinands, Gerbrich
de Boer, Jan
Vizan, Pablo
van den Brand, Sofie
Bockting, Claudi
van de Schoot, Rens
Bagheri, Ayoub
Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders
title Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders
title_full Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders
title_fullStr Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders
title_full_unstemmed Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders
title_short Active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders
title_sort active learning-based systematic reviewing using switching classification models: the case of the onset, maintenance, and relapse of depressive disorders
topic Research Metrics and Analytics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227618/
https://www.ncbi.nlm.nih.gov/pubmed/37260784
http://dx.doi.org/10.3389/frma.2023.1178181
work_keys_str_mv AT teijemajellejasper activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT hofsteelaura activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT brouwermarlies activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT debruinjonathan activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT ferdinandsgerbrich activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT deboerjan activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT vizanpablo activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT vandenbrandsofie activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT bocktingclaudi activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT vandeschootrens activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders
AT bagheriayoub activelearningbasedsystematicreviewingusingswitchingclassificationmodelsthecaseoftheonsetmaintenanceandrelapseofdepressivedisorders