Cargando…

Surface plasmon enhanced ultrathin Cu(2)ZnSnS(4)/crystalline-Si tandem solar cells

Thin-film silicon solar cells have sparked a great deal of research interest because of their low material usage and cost-effective processing. Despite the potential benefits, thin-film silicon solar cells have low power-conversion efficiency, which limits their commercial usage and mass production....

Descripción completa

Detalles Bibliográficos
Autores principales: Jamil, Shafayeth, Saha, Uday, Alam, Md. Kawsar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228359/
https://www.ncbi.nlm.nih.gov/pubmed/37260479
http://dx.doi.org/10.1039/d2na00826b
_version_ 1785050947557261312
author Jamil, Shafayeth
Saha, Uday
Alam, Md. Kawsar
author_facet Jamil, Shafayeth
Saha, Uday
Alam, Md. Kawsar
author_sort Jamil, Shafayeth
collection PubMed
description Thin-film silicon solar cells have sparked a great deal of research interest because of their low material usage and cost-effective processing. Despite the potential benefits, thin-film silicon solar cells have low power-conversion efficiency, which limits their commercial usage and mass production. To solve this problem, we design an ultrathin dual junction tandem solar cell with Cu(2)ZnSnS(4) (CZTS) and crystalline silicon (c-Si) as the main absorbing layer for the top and bottom cells, respectively, through optoelectronic simulation. To enhance light absorption in thin-film crystalline silicon, we use silver nanoparticles at the rear end of the bottom cell. We utilize amorphous Si with a c-Si heterojunction to boost the carrier collection efficiency. Computational analyses show that within 9 μm thin-film c-Si, we achieve 28.28% power conversion efficiency with a 220 nm top CZTS layer. These findings will help reduce the amount of Si (∼10 vs. ∼180 μm) in silicon-based solar cells while maintaining high power conversion efficiency.
format Online
Article
Text
id pubmed-10228359
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-102283592023-05-31 Surface plasmon enhanced ultrathin Cu(2)ZnSnS(4)/crystalline-Si tandem solar cells Jamil, Shafayeth Saha, Uday Alam, Md. Kawsar Nanoscale Adv Chemistry Thin-film silicon solar cells have sparked a great deal of research interest because of their low material usage and cost-effective processing. Despite the potential benefits, thin-film silicon solar cells have low power-conversion efficiency, which limits their commercial usage and mass production. To solve this problem, we design an ultrathin dual junction tandem solar cell with Cu(2)ZnSnS(4) (CZTS) and crystalline silicon (c-Si) as the main absorbing layer for the top and bottom cells, respectively, through optoelectronic simulation. To enhance light absorption in thin-film crystalline silicon, we use silver nanoparticles at the rear end of the bottom cell. We utilize amorphous Si with a c-Si heterojunction to boost the carrier collection efficiency. Computational analyses show that within 9 μm thin-film c-Si, we achieve 28.28% power conversion efficiency with a 220 nm top CZTS layer. These findings will help reduce the amount of Si (∼10 vs. ∼180 μm) in silicon-based solar cells while maintaining high power conversion efficiency. RSC 2023-04-12 /pmc/articles/PMC10228359/ /pubmed/37260479 http://dx.doi.org/10.1039/d2na00826b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Jamil, Shafayeth
Saha, Uday
Alam, Md. Kawsar
Surface plasmon enhanced ultrathin Cu(2)ZnSnS(4)/crystalline-Si tandem solar cells
title Surface plasmon enhanced ultrathin Cu(2)ZnSnS(4)/crystalline-Si tandem solar cells
title_full Surface plasmon enhanced ultrathin Cu(2)ZnSnS(4)/crystalline-Si tandem solar cells
title_fullStr Surface plasmon enhanced ultrathin Cu(2)ZnSnS(4)/crystalline-Si tandem solar cells
title_full_unstemmed Surface plasmon enhanced ultrathin Cu(2)ZnSnS(4)/crystalline-Si tandem solar cells
title_short Surface plasmon enhanced ultrathin Cu(2)ZnSnS(4)/crystalline-Si tandem solar cells
title_sort surface plasmon enhanced ultrathin cu(2)znsns(4)/crystalline-si tandem solar cells
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228359/
https://www.ncbi.nlm.nih.gov/pubmed/37260479
http://dx.doi.org/10.1039/d2na00826b
work_keys_str_mv AT jamilshafayeth surfaceplasmonenhancedultrathincu2znsns4crystallinesitandemsolarcells
AT sahauday surfaceplasmonenhancedultrathincu2znsns4crystallinesitandemsolarcells
AT alammdkawsar surfaceplasmonenhancedultrathincu2znsns4crystallinesitandemsolarcells