Cargando…
Serum Proteomic Signatures in Umbilical Cord Blood of Preterm Neonates Delivered by Women with Gestational Diabetes
BACKGROUND: Women who develop diabetes during pregnancy are at higher risk of preterm birth. Here, we identified differentially expressed proteins (DEPs) in the serum of umbilical cord blood samples obtained from preterm neonates delivered by women with gestational diabetes to provide therapeutic ta...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228520/ https://www.ncbi.nlm.nih.gov/pubmed/37260850 http://dx.doi.org/10.2147/DMSO.S406297 |
Sumario: | BACKGROUND: Women who develop diabetes during pregnancy are at higher risk of preterm birth. Here, we identified differentially expressed proteins (DEPs) in the serum of umbilical cord blood samples obtained from preterm neonates delivered by women with gestational diabetes to provide therapeutic targets for clinical drug development. MATERIALS AND METHODS: Umbilical cord blood was collected after delivery of preterm neonates by women with gestational diabetes and after delivery of healthy neonates by women without diabetes. DEPs in the serum samples were identified using liquid chromatography–tandem mass spectrometry. Gene Ontology (GO), cluster analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to determine the biological functions associated with these DEPs. Enzyme linked immunosorbent assay was used to confirm the key DEPs. RESULTS: We found that 21 proteins were significantly upregulated, and 51 proteins were significantly downregulated in 72 DEPs in serum samples. GO analyses showed that the DEPs were mainly associated with the GO terms cellular process, biological regulation, cellular anatomical entity, and binding. KEGG signaling pathway analysis indicated that most of the upregulated DEPs were associated with the complement and coagulation cascades, Staphylococcus aureus infection, pertussis, HIF-1 signaling pathway and PPAR signaling pathway and that most of the downregulated DEPs were associated with the complement and coagulation cascades, dilated cardiomyopathy, pathways in cancer, Chagas disease, and hypertrophic cardiomyopathy. The results of KEGG pathway annotation and enrichment analyses indicated that changes in the complement and coagulation cascades may be importantly associated with preterm delivery of neonates by women with gestational diabetes. The key DEPs were confirmed by enzyme linked immunosorbent assay. CONCLUSION: Our proteomics and bioinformatics analyses identified several key proteins and the complement and coagulation cascades pathway that warrant further investigation as potential novel therapeutic targets in preterm delivery among women with gestational diabetes. |
---|