Cargando…
Collagen mimetic peptide repair of the corneal nerve bed in a mouse model of dry eye disease
The intraepithelial sub-basal nerve plexus of the cornea is characterized by a central swirl of nerve processes that terminate between the apical cells of the epithelium. This plexus is a critical component of maintaining homeostatic function of the ocular surface. The cornea contains a high concent...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228686/ https://www.ncbi.nlm.nih.gov/pubmed/37260844 http://dx.doi.org/10.3389/fnins.2023.1148950 |
_version_ | 1785051020672368640 |
---|---|
author | Wareham, Lauren K. Holden, Joseph M. Bossardet, Olivia L. Baratta, Robert O. Del Buono, Brian J. Schlumpf, Eric Calkins, David J. |
author_facet | Wareham, Lauren K. Holden, Joseph M. Bossardet, Olivia L. Baratta, Robert O. Del Buono, Brian J. Schlumpf, Eric Calkins, David J. |
author_sort | Wareham, Lauren K. |
collection | PubMed |
description | The intraepithelial sub-basal nerve plexus of the cornea is characterized by a central swirl of nerve processes that terminate between the apical cells of the epithelium. This plexus is a critical component of maintaining homeostatic function of the ocular surface. The cornea contains a high concentration of collagen, which is susceptible to damage in conditions such as neuropathic pain, neurotrophic keratitis, and dry eye disease. Here we tested whether topical application of a collagen mimetic peptide (CMP) is efficacious in repairing the corneal sub-basal nerve plexus in a mouse model of ocular surface desiccation. We induced corneal tear film reduction, epithelial damage, and nerve bed degradation through a combination of environmental and pharmaceutical (atropine) desiccation. Mice were subjected to desiccating air flow and bilateral topical application of 1% atropine solution (4× daily) for 2 weeks. During the latter half of this exposure, mice received topical vehicle [phosphate buffered saline (PBS)] or CMP [200 μm (Pro-Pro-Gly)(7), 10 μl] once daily, 2 h prior to the first atropine treatment for that day. After euthanasia, cornea were labeled with antibodies against βIII tubulin to visualize and quantify changes to the nerve bed. For mice receiving vehicle only, the two-week desiccation regimen reduced neuronal coverage of the central sub-basal plexus and epithelial terminals compared to naïve, with some corneas demonstrating complete degeneration of nerve beds. Accordingly, both sub-basal and epithelial βIII tubulin-labeled processes demonstrated increased fragmentation, indicative of nerve disassembly. Treatment with CMP significantly reduced nerve fragmentation, expanded both sub-basal and epithelial neuronal coverage compared to vehicle controls, and improved corneal epithelium integrity, tear film production, and corneal sensitivity. Together, these results indicate that topical CMP significantly counters neurodegeneration characteristic of corneal surface desiccation. Repairing underlying collagen in conditions that damage the ocular surface could represent a novel therapeutic avenue in treating a broad spectrum of diseases or injury. |
format | Online Article Text |
id | pubmed-10228686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102286862023-05-31 Collagen mimetic peptide repair of the corneal nerve bed in a mouse model of dry eye disease Wareham, Lauren K. Holden, Joseph M. Bossardet, Olivia L. Baratta, Robert O. Del Buono, Brian J. Schlumpf, Eric Calkins, David J. Front Neurosci Neuroscience The intraepithelial sub-basal nerve plexus of the cornea is characterized by a central swirl of nerve processes that terminate between the apical cells of the epithelium. This plexus is a critical component of maintaining homeostatic function of the ocular surface. The cornea contains a high concentration of collagen, which is susceptible to damage in conditions such as neuropathic pain, neurotrophic keratitis, and dry eye disease. Here we tested whether topical application of a collagen mimetic peptide (CMP) is efficacious in repairing the corneal sub-basal nerve plexus in a mouse model of ocular surface desiccation. We induced corneal tear film reduction, epithelial damage, and nerve bed degradation through a combination of environmental and pharmaceutical (atropine) desiccation. Mice were subjected to desiccating air flow and bilateral topical application of 1% atropine solution (4× daily) for 2 weeks. During the latter half of this exposure, mice received topical vehicle [phosphate buffered saline (PBS)] or CMP [200 μm (Pro-Pro-Gly)(7), 10 μl] once daily, 2 h prior to the first atropine treatment for that day. After euthanasia, cornea were labeled with antibodies against βIII tubulin to visualize and quantify changes to the nerve bed. For mice receiving vehicle only, the two-week desiccation regimen reduced neuronal coverage of the central sub-basal plexus and epithelial terminals compared to naïve, with some corneas demonstrating complete degeneration of nerve beds. Accordingly, both sub-basal and epithelial βIII tubulin-labeled processes demonstrated increased fragmentation, indicative of nerve disassembly. Treatment with CMP significantly reduced nerve fragmentation, expanded both sub-basal and epithelial neuronal coverage compared to vehicle controls, and improved corneal epithelium integrity, tear film production, and corneal sensitivity. Together, these results indicate that topical CMP significantly counters neurodegeneration characteristic of corneal surface desiccation. Repairing underlying collagen in conditions that damage the ocular surface could represent a novel therapeutic avenue in treating a broad spectrum of diseases or injury. Frontiers Media S.A. 2023-05-16 /pmc/articles/PMC10228686/ /pubmed/37260844 http://dx.doi.org/10.3389/fnins.2023.1148950 Text en Copyright © 2023 Wareham, Holden, Bossardet, Baratta, Del Buono, Schlumpf and Calkins. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Wareham, Lauren K. Holden, Joseph M. Bossardet, Olivia L. Baratta, Robert O. Del Buono, Brian J. Schlumpf, Eric Calkins, David J. Collagen mimetic peptide repair of the corneal nerve bed in a mouse model of dry eye disease |
title | Collagen mimetic peptide repair of the corneal nerve bed in a mouse model of dry eye disease |
title_full | Collagen mimetic peptide repair of the corneal nerve bed in a mouse model of dry eye disease |
title_fullStr | Collagen mimetic peptide repair of the corneal nerve bed in a mouse model of dry eye disease |
title_full_unstemmed | Collagen mimetic peptide repair of the corneal nerve bed in a mouse model of dry eye disease |
title_short | Collagen mimetic peptide repair of the corneal nerve bed in a mouse model of dry eye disease |
title_sort | collagen mimetic peptide repair of the corneal nerve bed in a mouse model of dry eye disease |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228686/ https://www.ncbi.nlm.nih.gov/pubmed/37260844 http://dx.doi.org/10.3389/fnins.2023.1148950 |
work_keys_str_mv | AT warehamlaurenk collagenmimeticpeptiderepairofthecornealnervebedinamousemodelofdryeyedisease AT holdenjosephm collagenmimeticpeptiderepairofthecornealnervebedinamousemodelofdryeyedisease AT bossardetolivial collagenmimeticpeptiderepairofthecornealnervebedinamousemodelofdryeyedisease AT barattaroberto collagenmimeticpeptiderepairofthecornealnervebedinamousemodelofdryeyedisease AT delbuonobrianj collagenmimeticpeptiderepairofthecornealnervebedinamousemodelofdryeyedisease AT schlumpferic collagenmimeticpeptiderepairofthecornealnervebedinamousemodelofdryeyedisease AT calkinsdavidj collagenmimeticpeptiderepairofthecornealnervebedinamousemodelofdryeyedisease |