Cargando…

Krüppel-homologue 1 regulates the development of Tuta absoluta and its cascade regulation pattern in the juvenile hormone signalling pathway

Tomato leaf miner, Tuta absoluta (Meyrick), is one of the most destructive quarantine pests globally. It has been confirmed that Krüppel-homologue 1 (kr-h1) plays a key role in the regulation of juvenile hormone (JH). However, it is unclear how kr-h1 regulates the synthesis of JH and its cascade reg...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaodi, Bi, Siyan, Tang, Yanhong, Zhang, Guifen, Huang, Cong, Wan, Fanghao, Lü, Zhichuang, Liu, Wanxue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229232/
https://www.ncbi.nlm.nih.gov/pubmed/37253420
http://dx.doi.org/10.1098/rsob.220372
Descripción
Sumario:Tomato leaf miner, Tuta absoluta (Meyrick), is one of the most destructive quarantine pests globally. It has been confirmed that Krüppel-homologue 1 (kr-h1) plays a key role in the regulation of juvenile hormone (JH). However, it is unclear how kr-h1 regulates the synthesis of JH and its cascade regulation pattern in tomato leaf miner. Here, we obtained the six JH signalling genes (kr-h1, Methoprene-tolerant, Forkhead box O, Juvenile acid methyltransferase, Juvenile hormone esterase and Fatty acid synthase 2), and applied RNA interference to explore the role of kr-h1 and the seven genes (plus Vitellogenin) regulation relationship in T. absoluta. Bioinformatics analysis revealed the structural characteristics of kr-h1 protein and JH receptor Met, which contained eight C2H2 zinc finger structures and three typical domains of the bHLH-PAS family, respectively. The expression levels of Met and Vg were upregulated after RNAi of kr-h1 gene, while the gene levels of JHAMT and FAS2 were downregulated. Furthermore, topical application of JH analogue to second instar larvae could induce the expression of kr-h1 and inhibit the expression of Met. Our study reveals the mechanism by which kr-h1 regulates JH pathway genes, which could be applied to control the growth of tomato leaf miners.