Cargando…

Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction

Rapid progress in modern technologies demands zero thermal expansion (ZTE) materials with multi-property profiles to withstand harsh service conditions. Thus far, the majority of documented ZTE materials have shortcomings in different aspects that limit their practical utilization. Here, we report o...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Chengyi, Lin, Kun, Chen, Xin, Jiang, Suihe, Cao, Yili, Li, Wenjie, Chen, Liang, An, Ke, Chen, Yan, Yu, Dunji, Kato, Kenichi, Zhang, Qinghua, Gu, Lin, You, Li, Kuang, Xiaojun, Wu, Hui, Li, Qiang, Deng, Jinxia, Xing, Xianran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229566/
https://www.ncbi.nlm.nih.gov/pubmed/37253768
http://dx.doi.org/10.1038/s41467-023-38929-0
Descripción
Sumario:Rapid progress in modern technologies demands zero thermal expansion (ZTE) materials with multi-property profiles to withstand harsh service conditions. Thus far, the majority of documented ZTE materials have shortcomings in different aspects that limit their practical utilization. Here, we report on a superior isotropic ZTE alloy with collective properties regarding wide operating temperature windows, high strength-stiffness, and cyclic thermal stability. A boron-migration-mediated solid-state reaction (BMSR) constructs a salient “plum pudding” structure in a dual-phase Er-Fe-B alloy, where the precursor ErFe(10) phase reacts with the migrated boron and transforms into the target Er(2)Fe(14)B (pudding) and α-Fe phases (plum). The formation of such microstructure helps to eliminate apparent crystallographic texture, tailor and form isotropic ZTE, and simultaneously enhance the strength and toughness of the alloy. These findings suggest a promising design paradigm for comprehensive performance ZTE alloys.