Cargando…

Molecular patterns identify distinct subclasses of myeloid neoplasia

Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Kewan, Tariq, Durmaz, Arda, Bahaj, Waled, Gurnari, Carmelo, Terkawi, Laila, Awada, Hussein, Ogbue, Olisaemeka D., Ahmed, Ramsha, Pagliuca, Simona, Awada, Hassan, Kutoba, Yasuo, Mori, Minako, Ponvilawan, Ben, Al-Share, Bayan, Patel, Bhumika J., Carraway, Hetty E., Scott, Jacob, Balasubramanian, Suresh K., Bat, Taha, Madanat, Yazan, Sekeres, Mikkael A., Haferlach, Torsten, Visconte, Valeria, Maciejewski, Jaroslaw P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229666/
https://www.ncbi.nlm.nih.gov/pubmed/37253784
http://dx.doi.org/10.1038/s41467-023-38515-4
_version_ 1785051317225390080
author Kewan, Tariq
Durmaz, Arda
Bahaj, Waled
Gurnari, Carmelo
Terkawi, Laila
Awada, Hussein
Ogbue, Olisaemeka D.
Ahmed, Ramsha
Pagliuca, Simona
Awada, Hassan
Kutoba, Yasuo
Mori, Minako
Ponvilawan, Ben
Al-Share, Bayan
Patel, Bhumika J.
Carraway, Hetty E.
Scott, Jacob
Balasubramanian, Suresh K.
Bat, Taha
Madanat, Yazan
Sekeres, Mikkael A.
Haferlach, Torsten
Visconte, Valeria
Maciejewski, Jaroslaw P.
author_facet Kewan, Tariq
Durmaz, Arda
Bahaj, Waled
Gurnari, Carmelo
Terkawi, Laila
Awada, Hussein
Ogbue, Olisaemeka D.
Ahmed, Ramsha
Pagliuca, Simona
Awada, Hassan
Kutoba, Yasuo
Mori, Minako
Ponvilawan, Ben
Al-Share, Bayan
Patel, Bhumika J.
Carraway, Hetty E.
Scott, Jacob
Balasubramanian, Suresh K.
Bat, Taha
Madanat, Yazan
Sekeres, Mikkael A.
Haferlach, Torsten
Visconte, Valeria
Maciejewski, Jaroslaw P.
author_sort Kewan, Tariq
collection PubMed
description Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show that unsupervised machine learning can identify functional objective molecular clusters, irrespective of anamnestic clinico-morphological features, despite the complexity of the molecular alterations in myeloid neoplasia. Our approach reflects disease evolution, informed classification, prognostication, and molecular interactions. We apply machine learning methods on 3588 patients with myelodysplastic syndromes and secondary acute myeloid leukemia to identify 14 molecularly distinct clusters. Remarkably, our model shows clinical implications in terms of overall survival and response to treatment even after adjusting to the molecular international prognostic scoring system (IPSS-M). In addition, the model is validated on an external cohort of 412 patients. Our subclassification model is available via a web-based open-access resource (https://drmz.shinyapps.io/mds_latent).
format Online
Article
Text
id pubmed-10229666
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102296662023-06-01 Molecular patterns identify distinct subclasses of myeloid neoplasia Kewan, Tariq Durmaz, Arda Bahaj, Waled Gurnari, Carmelo Terkawi, Laila Awada, Hussein Ogbue, Olisaemeka D. Ahmed, Ramsha Pagliuca, Simona Awada, Hassan Kutoba, Yasuo Mori, Minako Ponvilawan, Ben Al-Share, Bayan Patel, Bhumika J. Carraway, Hetty E. Scott, Jacob Balasubramanian, Suresh K. Bat, Taha Madanat, Yazan Sekeres, Mikkael A. Haferlach, Torsten Visconte, Valeria Maciejewski, Jaroslaw P. Nat Commun Article Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show that unsupervised machine learning can identify functional objective molecular clusters, irrespective of anamnestic clinico-morphological features, despite the complexity of the molecular alterations in myeloid neoplasia. Our approach reflects disease evolution, informed classification, prognostication, and molecular interactions. We apply machine learning methods on 3588 patients with myelodysplastic syndromes and secondary acute myeloid leukemia to identify 14 molecularly distinct clusters. Remarkably, our model shows clinical implications in terms of overall survival and response to treatment even after adjusting to the molecular international prognostic scoring system (IPSS-M). In addition, the model is validated on an external cohort of 412 patients. Our subclassification model is available via a web-based open-access resource (https://drmz.shinyapps.io/mds_latent). Nature Publishing Group UK 2023-05-30 /pmc/articles/PMC10229666/ /pubmed/37253784 http://dx.doi.org/10.1038/s41467-023-38515-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Kewan, Tariq
Durmaz, Arda
Bahaj, Waled
Gurnari, Carmelo
Terkawi, Laila
Awada, Hussein
Ogbue, Olisaemeka D.
Ahmed, Ramsha
Pagliuca, Simona
Awada, Hassan
Kutoba, Yasuo
Mori, Minako
Ponvilawan, Ben
Al-Share, Bayan
Patel, Bhumika J.
Carraway, Hetty E.
Scott, Jacob
Balasubramanian, Suresh K.
Bat, Taha
Madanat, Yazan
Sekeres, Mikkael A.
Haferlach, Torsten
Visconte, Valeria
Maciejewski, Jaroslaw P.
Molecular patterns identify distinct subclasses of myeloid neoplasia
title Molecular patterns identify distinct subclasses of myeloid neoplasia
title_full Molecular patterns identify distinct subclasses of myeloid neoplasia
title_fullStr Molecular patterns identify distinct subclasses of myeloid neoplasia
title_full_unstemmed Molecular patterns identify distinct subclasses of myeloid neoplasia
title_short Molecular patterns identify distinct subclasses of myeloid neoplasia
title_sort molecular patterns identify distinct subclasses of myeloid neoplasia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229666/
https://www.ncbi.nlm.nih.gov/pubmed/37253784
http://dx.doi.org/10.1038/s41467-023-38515-4
work_keys_str_mv AT kewantariq molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT durmazarda molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT bahajwaled molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT gurnaricarmelo molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT terkawilaila molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT awadahussein molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT ogbueolisaemekad molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT ahmedramsha molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT pagliucasimona molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT awadahassan molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT kutobayasuo molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT moriminako molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT ponvilawanben molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT alsharebayan molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT patelbhumikaj molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT carrawayhettye molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT scottjacob molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT balasubramaniansureshk molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT battaha molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT madanatyazan molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT sekeresmikkaela molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT haferlachtorsten molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT viscontevaleria molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia
AT maciejewskijaroslawp molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia