Cargando…
Molecular patterns identify distinct subclasses of myeloid neoplasia
Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show tha...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229666/ https://www.ncbi.nlm.nih.gov/pubmed/37253784 http://dx.doi.org/10.1038/s41467-023-38515-4 |
_version_ | 1785051317225390080 |
---|---|
author | Kewan, Tariq Durmaz, Arda Bahaj, Waled Gurnari, Carmelo Terkawi, Laila Awada, Hussein Ogbue, Olisaemeka D. Ahmed, Ramsha Pagliuca, Simona Awada, Hassan Kutoba, Yasuo Mori, Minako Ponvilawan, Ben Al-Share, Bayan Patel, Bhumika J. Carraway, Hetty E. Scott, Jacob Balasubramanian, Suresh K. Bat, Taha Madanat, Yazan Sekeres, Mikkael A. Haferlach, Torsten Visconte, Valeria Maciejewski, Jaroslaw P. |
author_facet | Kewan, Tariq Durmaz, Arda Bahaj, Waled Gurnari, Carmelo Terkawi, Laila Awada, Hussein Ogbue, Olisaemeka D. Ahmed, Ramsha Pagliuca, Simona Awada, Hassan Kutoba, Yasuo Mori, Minako Ponvilawan, Ben Al-Share, Bayan Patel, Bhumika J. Carraway, Hetty E. Scott, Jacob Balasubramanian, Suresh K. Bat, Taha Madanat, Yazan Sekeres, Mikkael A. Haferlach, Torsten Visconte, Valeria Maciejewski, Jaroslaw P. |
author_sort | Kewan, Tariq |
collection | PubMed |
description | Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show that unsupervised machine learning can identify functional objective molecular clusters, irrespective of anamnestic clinico-morphological features, despite the complexity of the molecular alterations in myeloid neoplasia. Our approach reflects disease evolution, informed classification, prognostication, and molecular interactions. We apply machine learning methods on 3588 patients with myelodysplastic syndromes and secondary acute myeloid leukemia to identify 14 molecularly distinct clusters. Remarkably, our model shows clinical implications in terms of overall survival and response to treatment even after adjusting to the molecular international prognostic scoring system (IPSS-M). In addition, the model is validated on an external cohort of 412 patients. Our subclassification model is available via a web-based open-access resource (https://drmz.shinyapps.io/mds_latent). |
format | Online Article Text |
id | pubmed-10229666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102296662023-06-01 Molecular patterns identify distinct subclasses of myeloid neoplasia Kewan, Tariq Durmaz, Arda Bahaj, Waled Gurnari, Carmelo Terkawi, Laila Awada, Hussein Ogbue, Olisaemeka D. Ahmed, Ramsha Pagliuca, Simona Awada, Hassan Kutoba, Yasuo Mori, Minako Ponvilawan, Ben Al-Share, Bayan Patel, Bhumika J. Carraway, Hetty E. Scott, Jacob Balasubramanian, Suresh K. Bat, Taha Madanat, Yazan Sekeres, Mikkael A. Haferlach, Torsten Visconte, Valeria Maciejewski, Jaroslaw P. Nat Commun Article Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show that unsupervised machine learning can identify functional objective molecular clusters, irrespective of anamnestic clinico-morphological features, despite the complexity of the molecular alterations in myeloid neoplasia. Our approach reflects disease evolution, informed classification, prognostication, and molecular interactions. We apply machine learning methods on 3588 patients with myelodysplastic syndromes and secondary acute myeloid leukemia to identify 14 molecularly distinct clusters. Remarkably, our model shows clinical implications in terms of overall survival and response to treatment even after adjusting to the molecular international prognostic scoring system (IPSS-M). In addition, the model is validated on an external cohort of 412 patients. Our subclassification model is available via a web-based open-access resource (https://drmz.shinyapps.io/mds_latent). Nature Publishing Group UK 2023-05-30 /pmc/articles/PMC10229666/ /pubmed/37253784 http://dx.doi.org/10.1038/s41467-023-38515-4 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kewan, Tariq Durmaz, Arda Bahaj, Waled Gurnari, Carmelo Terkawi, Laila Awada, Hussein Ogbue, Olisaemeka D. Ahmed, Ramsha Pagliuca, Simona Awada, Hassan Kutoba, Yasuo Mori, Minako Ponvilawan, Ben Al-Share, Bayan Patel, Bhumika J. Carraway, Hetty E. Scott, Jacob Balasubramanian, Suresh K. Bat, Taha Madanat, Yazan Sekeres, Mikkael A. Haferlach, Torsten Visconte, Valeria Maciejewski, Jaroslaw P. Molecular patterns identify distinct subclasses of myeloid neoplasia |
title | Molecular patterns identify distinct subclasses of myeloid neoplasia |
title_full | Molecular patterns identify distinct subclasses of myeloid neoplasia |
title_fullStr | Molecular patterns identify distinct subclasses of myeloid neoplasia |
title_full_unstemmed | Molecular patterns identify distinct subclasses of myeloid neoplasia |
title_short | Molecular patterns identify distinct subclasses of myeloid neoplasia |
title_sort | molecular patterns identify distinct subclasses of myeloid neoplasia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229666/ https://www.ncbi.nlm.nih.gov/pubmed/37253784 http://dx.doi.org/10.1038/s41467-023-38515-4 |
work_keys_str_mv | AT kewantariq molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT durmazarda molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT bahajwaled molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT gurnaricarmelo molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT terkawilaila molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT awadahussein molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT ogbueolisaemekad molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT ahmedramsha molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT pagliucasimona molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT awadahassan molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT kutobayasuo molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT moriminako molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT ponvilawanben molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT alsharebayan molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT patelbhumikaj molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT carrawayhettye molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT scottjacob molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT balasubramaniansureshk molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT battaha molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT madanatyazan molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT sekeresmikkaela molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT haferlachtorsten molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT viscontevaleria molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia AT maciejewskijaroslawp molecularpatternsidentifydistinctsubclassesofmyeloidneoplasia |