Cargando…

An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis

BACKGROUND: The evaluation of liver fibrosis is essential in the management of patients with autoimmune hepatitis (AIH). We aimed to establish and validate an easy-to-use nomogram to identify AIH patients with advanced liver fibrosis. METHODS: AIH patients who underwent liver biopsies were included...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhiyi, Wang, Jian, Wang, Huali, Qiu, Yuanwang, Zhu, Li, Liu, Jiacheng, Chen, Yun, Li, Yiguang, Liu, Yilin, Chen, Yuxin, Yin, Shengxia, Tong, Xin, Yan, Xiaomin, Xiong, Yali, Yang, Yongfeng, Zhang, Qun, Li, Jie, Zhu, Chuanwu, Wu, Chao, Huang, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229817/
https://www.ncbi.nlm.nih.gov/pubmed/37266419
http://dx.doi.org/10.3389/fimmu.2023.1130362
_version_ 1785051363005169664
author Zhang, Zhiyi
Wang, Jian
Wang, Huali
Qiu, Yuanwang
Zhu, Li
Liu, Jiacheng
Chen, Yun
Li, Yiguang
Liu, Yilin
Chen, Yuxin
Yin, Shengxia
Tong, Xin
Yan, Xiaomin
Xiong, Yali
Yang, Yongfeng
Zhang, Qun
Li, Jie
Zhu, Chuanwu
Wu, Chao
Huang, Rui
author_facet Zhang, Zhiyi
Wang, Jian
Wang, Huali
Qiu, Yuanwang
Zhu, Li
Liu, Jiacheng
Chen, Yun
Li, Yiguang
Liu, Yilin
Chen, Yuxin
Yin, Shengxia
Tong, Xin
Yan, Xiaomin
Xiong, Yali
Yang, Yongfeng
Zhang, Qun
Li, Jie
Zhu, Chuanwu
Wu, Chao
Huang, Rui
author_sort Zhang, Zhiyi
collection PubMed
description BACKGROUND: The evaluation of liver fibrosis is essential in the management of patients with autoimmune hepatitis (AIH). We aimed to establish and validate an easy-to-use nomogram to identify AIH patients with advanced liver fibrosis. METHODS: AIH patients who underwent liver biopsies were included and randomly divided into a training set and a validation set. The least absolute shrinkage and selection operator (LASSO) regression was used to select independent predictors of advanced liver fibrosis from the training set, which were utilized to establish a nomogram. The performance of the nomogram was evaluated using the receiver characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). RESULTS: The median age of 235 patients with AIH was 54 years old, with 83.0% of them being female. Six independent factors associated with advanced fibrosis, including sex, age, red cell distribution width, platelets, alkaline phosphatase, and prothrombin time, were combined to construct a predictive AIH fibrosis (AIHF)-nomogram. The AIHF-nomogram showed good agreement with real observations in the training and validation sets, according to the calibration curve. The AIHF-nomogram performed significantly better than the fibrosis-4 and aminotransferase-to-platelet ratio scores in the training and validation sets, with an area under the ROCs for predicting advanced fibrosis of 0.804 in the training set and 0.781 in the validation set. DCA indicated that the AIHFI-nomogram was clinically useful. The nomogram will be available at http://ndth-zzy.shinyapps.io/AIHF-nomogram/as a web-based calculator. CONCLUSIONS: The novel, easy-to-use web-based AIHF-nomogram model provides an insightful and applicable tool to identify AIH patients with advanced liver fibrosis.
format Online
Article
Text
id pubmed-10229817
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-102298172023-06-01 An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis Zhang, Zhiyi Wang, Jian Wang, Huali Qiu, Yuanwang Zhu, Li Liu, Jiacheng Chen, Yun Li, Yiguang Liu, Yilin Chen, Yuxin Yin, Shengxia Tong, Xin Yan, Xiaomin Xiong, Yali Yang, Yongfeng Zhang, Qun Li, Jie Zhu, Chuanwu Wu, Chao Huang, Rui Front Immunol Immunology BACKGROUND: The evaluation of liver fibrosis is essential in the management of patients with autoimmune hepatitis (AIH). We aimed to establish and validate an easy-to-use nomogram to identify AIH patients with advanced liver fibrosis. METHODS: AIH patients who underwent liver biopsies were included and randomly divided into a training set and a validation set. The least absolute shrinkage and selection operator (LASSO) regression was used to select independent predictors of advanced liver fibrosis from the training set, which were utilized to establish a nomogram. The performance of the nomogram was evaluated using the receiver characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). RESULTS: The median age of 235 patients with AIH was 54 years old, with 83.0% of them being female. Six independent factors associated with advanced fibrosis, including sex, age, red cell distribution width, platelets, alkaline phosphatase, and prothrombin time, were combined to construct a predictive AIH fibrosis (AIHF)-nomogram. The AIHF-nomogram showed good agreement with real observations in the training and validation sets, according to the calibration curve. The AIHF-nomogram performed significantly better than the fibrosis-4 and aminotransferase-to-platelet ratio scores in the training and validation sets, with an area under the ROCs for predicting advanced fibrosis of 0.804 in the training set and 0.781 in the validation set. DCA indicated that the AIHFI-nomogram was clinically useful. The nomogram will be available at http://ndth-zzy.shinyapps.io/AIHF-nomogram/as a web-based calculator. CONCLUSIONS: The novel, easy-to-use web-based AIHF-nomogram model provides an insightful and applicable tool to identify AIH patients with advanced liver fibrosis. Frontiers Media S.A. 2023-05-17 /pmc/articles/PMC10229817/ /pubmed/37266419 http://dx.doi.org/10.3389/fimmu.2023.1130362 Text en Copyright © 2023 Zhang, Wang, Wang, Qiu, Zhu, Liu, Chen, Li, Liu, Chen, Yin, Tong, Yan, Xiong, Yang, Zhang, Li, Zhu, Wu and Huang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Zhang, Zhiyi
Wang, Jian
Wang, Huali
Qiu, Yuanwang
Zhu, Li
Liu, Jiacheng
Chen, Yun
Li, Yiguang
Liu, Yilin
Chen, Yuxin
Yin, Shengxia
Tong, Xin
Yan, Xiaomin
Xiong, Yali
Yang, Yongfeng
Zhang, Qun
Li, Jie
Zhu, Chuanwu
Wu, Chao
Huang, Rui
An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis
title An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis
title_full An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis
title_fullStr An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis
title_full_unstemmed An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis
title_short An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis
title_sort easy-to-use aihf-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229817/
https://www.ncbi.nlm.nih.gov/pubmed/37266419
http://dx.doi.org/10.3389/fimmu.2023.1130362
work_keys_str_mv AT zhangzhiyi aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT wangjian aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT wanghuali aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT qiuyuanwang aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT zhuli aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT liujiacheng aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT chenyun aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT liyiguang aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT liuyilin aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT chenyuxin aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT yinshengxia aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT tongxin aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT yanxiaomin aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT xiongyali aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT yangyongfeng aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT zhangqun aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT lijie aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT zhuchuanwu aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT wuchao aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT huangrui aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT zhangzhiyi easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT wangjian easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT wanghuali easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT qiuyuanwang easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT zhuli easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT liujiacheng easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT chenyun easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT liyiguang easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT liuyilin easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT chenyuxin easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT yinshengxia easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT tongxin easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT yanxiaomin easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT xiongyali easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT yangyongfeng easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT zhangqun easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT lijie easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT zhuchuanwu easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT wuchao easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis
AT huangrui easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis