Cargando…
An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis
BACKGROUND: The evaluation of liver fibrosis is essential in the management of patients with autoimmune hepatitis (AIH). We aimed to establish and validate an easy-to-use nomogram to identify AIH patients with advanced liver fibrosis. METHODS: AIH patients who underwent liver biopsies were included...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229817/ https://www.ncbi.nlm.nih.gov/pubmed/37266419 http://dx.doi.org/10.3389/fimmu.2023.1130362 |
_version_ | 1785051363005169664 |
---|---|
author | Zhang, Zhiyi Wang, Jian Wang, Huali Qiu, Yuanwang Zhu, Li Liu, Jiacheng Chen, Yun Li, Yiguang Liu, Yilin Chen, Yuxin Yin, Shengxia Tong, Xin Yan, Xiaomin Xiong, Yali Yang, Yongfeng Zhang, Qun Li, Jie Zhu, Chuanwu Wu, Chao Huang, Rui |
author_facet | Zhang, Zhiyi Wang, Jian Wang, Huali Qiu, Yuanwang Zhu, Li Liu, Jiacheng Chen, Yun Li, Yiguang Liu, Yilin Chen, Yuxin Yin, Shengxia Tong, Xin Yan, Xiaomin Xiong, Yali Yang, Yongfeng Zhang, Qun Li, Jie Zhu, Chuanwu Wu, Chao Huang, Rui |
author_sort | Zhang, Zhiyi |
collection | PubMed |
description | BACKGROUND: The evaluation of liver fibrosis is essential in the management of patients with autoimmune hepatitis (AIH). We aimed to establish and validate an easy-to-use nomogram to identify AIH patients with advanced liver fibrosis. METHODS: AIH patients who underwent liver biopsies were included and randomly divided into a training set and a validation set. The least absolute shrinkage and selection operator (LASSO) regression was used to select independent predictors of advanced liver fibrosis from the training set, which were utilized to establish a nomogram. The performance of the nomogram was evaluated using the receiver characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). RESULTS: The median age of 235 patients with AIH was 54 years old, with 83.0% of them being female. Six independent factors associated with advanced fibrosis, including sex, age, red cell distribution width, platelets, alkaline phosphatase, and prothrombin time, were combined to construct a predictive AIH fibrosis (AIHF)-nomogram. The AIHF-nomogram showed good agreement with real observations in the training and validation sets, according to the calibration curve. The AIHF-nomogram performed significantly better than the fibrosis-4 and aminotransferase-to-platelet ratio scores in the training and validation sets, with an area under the ROCs for predicting advanced fibrosis of 0.804 in the training set and 0.781 in the validation set. DCA indicated that the AIHFI-nomogram was clinically useful. The nomogram will be available at http://ndth-zzy.shinyapps.io/AIHF-nomogram/as a web-based calculator. CONCLUSIONS: The novel, easy-to-use web-based AIHF-nomogram model provides an insightful and applicable tool to identify AIH patients with advanced liver fibrosis. |
format | Online Article Text |
id | pubmed-10229817 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102298172023-06-01 An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis Zhang, Zhiyi Wang, Jian Wang, Huali Qiu, Yuanwang Zhu, Li Liu, Jiacheng Chen, Yun Li, Yiguang Liu, Yilin Chen, Yuxin Yin, Shengxia Tong, Xin Yan, Xiaomin Xiong, Yali Yang, Yongfeng Zhang, Qun Li, Jie Zhu, Chuanwu Wu, Chao Huang, Rui Front Immunol Immunology BACKGROUND: The evaluation of liver fibrosis is essential in the management of patients with autoimmune hepatitis (AIH). We aimed to establish and validate an easy-to-use nomogram to identify AIH patients with advanced liver fibrosis. METHODS: AIH patients who underwent liver biopsies were included and randomly divided into a training set and a validation set. The least absolute shrinkage and selection operator (LASSO) regression was used to select independent predictors of advanced liver fibrosis from the training set, which were utilized to establish a nomogram. The performance of the nomogram was evaluated using the receiver characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). RESULTS: The median age of 235 patients with AIH was 54 years old, with 83.0% of them being female. Six independent factors associated with advanced fibrosis, including sex, age, red cell distribution width, platelets, alkaline phosphatase, and prothrombin time, were combined to construct a predictive AIH fibrosis (AIHF)-nomogram. The AIHF-nomogram showed good agreement with real observations in the training and validation sets, according to the calibration curve. The AIHF-nomogram performed significantly better than the fibrosis-4 and aminotransferase-to-platelet ratio scores in the training and validation sets, with an area under the ROCs for predicting advanced fibrosis of 0.804 in the training set and 0.781 in the validation set. DCA indicated that the AIHFI-nomogram was clinically useful. The nomogram will be available at http://ndth-zzy.shinyapps.io/AIHF-nomogram/as a web-based calculator. CONCLUSIONS: The novel, easy-to-use web-based AIHF-nomogram model provides an insightful and applicable tool to identify AIH patients with advanced liver fibrosis. Frontiers Media S.A. 2023-05-17 /pmc/articles/PMC10229817/ /pubmed/37266419 http://dx.doi.org/10.3389/fimmu.2023.1130362 Text en Copyright © 2023 Zhang, Wang, Wang, Qiu, Zhu, Liu, Chen, Li, Liu, Chen, Yin, Tong, Yan, Xiong, Yang, Zhang, Li, Zhu, Wu and Huang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Zhang, Zhiyi Wang, Jian Wang, Huali Qiu, Yuanwang Zhu, Li Liu, Jiacheng Chen, Yun Li, Yiguang Liu, Yilin Chen, Yuxin Yin, Shengxia Tong, Xin Yan, Xiaomin Xiong, Yali Yang, Yongfeng Zhang, Qun Li, Jie Zhu, Chuanwu Wu, Chao Huang, Rui An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis |
title | An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis |
title_full | An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis |
title_fullStr | An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis |
title_full_unstemmed | An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis |
title_short | An easy-to-use AIHF-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis |
title_sort | easy-to-use aihf-nomogram to predict advanced liver fibrosis in patients with autoimmune hepatitis |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229817/ https://www.ncbi.nlm.nih.gov/pubmed/37266419 http://dx.doi.org/10.3389/fimmu.2023.1130362 |
work_keys_str_mv | AT zhangzhiyi aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT wangjian aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT wanghuali aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT qiuyuanwang aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT zhuli aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT liujiacheng aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT chenyun aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT liyiguang aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT liuyilin aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT chenyuxin aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT yinshengxia aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT tongxin aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT yanxiaomin aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT xiongyali aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT yangyongfeng aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT zhangqun aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT lijie aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT zhuchuanwu aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT wuchao aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT huangrui aneasytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT zhangzhiyi easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT wangjian easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT wanghuali easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT qiuyuanwang easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT zhuli easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT liujiacheng easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT chenyun easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT liyiguang easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT liuyilin easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT chenyuxin easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT yinshengxia easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT tongxin easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT yanxiaomin easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT xiongyali easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT yangyongfeng easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT zhangqun easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT lijie easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT zhuchuanwu easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT wuchao easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis AT huangrui easytouseaihfnomogramtopredictadvancedliverfibrosisinpatientswithautoimmunehepatitis |