Cargando…
Molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis
Tyrosine kinase inhibitor therapy revolutionized chronic myeloid leukemia treatment and showed how targeted therapy and molecular monitoring could be used to substantially improve survival outcomes. We used chronic myeloid leukemia as a model to understand a critical question: why do some patients h...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Fondazione Ferrata Storti
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230428/ https://www.ncbi.nlm.nih.gov/pubmed/36727397 http://dx.doi.org/10.3324/haematol.2022.281878 |
_version_ | 1785051525641404416 |
---|---|
author | Radich, Jerald P. Wall, Matthew Branford, Susan Campbell, Catarina D. Chaturvedi, Shalini DeAngelo, Daniel J. Deininger, Michael W. Guinney, Justin Hochhaus, Andreas Hughes, Timothy P. Kantarjian, Hagop M. Larson, Richard A. Li, Sai Maegawa, Rodrigo Mishra, Kaushal Obourn, Vanessa Pinilla-Ibarz, Javier Purkayastha, Das Sadek, Islam Saglio, Giuseppe Shrestha, Alok White, Brian S. Druker, Brian J. |
author_facet | Radich, Jerald P. Wall, Matthew Branford, Susan Campbell, Catarina D. Chaturvedi, Shalini DeAngelo, Daniel J. Deininger, Michael W. Guinney, Justin Hochhaus, Andreas Hughes, Timothy P. Kantarjian, Hagop M. Larson, Richard A. Li, Sai Maegawa, Rodrigo Mishra, Kaushal Obourn, Vanessa Pinilla-Ibarz, Javier Purkayastha, Das Sadek, Islam Saglio, Giuseppe Shrestha, Alok White, Brian S. Druker, Brian J. |
author_sort | Radich, Jerald P. |
collection | PubMed |
description | Tyrosine kinase inhibitor therapy revolutionized chronic myeloid leukemia treatment and showed how targeted therapy and molecular monitoring could be used to substantially improve survival outcomes. We used chronic myeloid leukemia as a model to understand a critical question: why do some patients have an excellent response to therapy, while others have a poor response? We studied gene expression in whole blood samples from 112 patients from a large phase III randomized trial (clinicaltrials gov. Identifier: NCT00471497), dichotomizing cases into good responders (BCR::ABL1 ≤10% on the International Scale by 3 and 6 months and ≤0.1% by 12 months) and poor responders (failure to meet these criteria). Predictive models based on gene expression demonstrated the best performance (area under the curve =0.76, standard deviation =0.07). All of the top 20 pathways overexpressed in good responders involved immune regulation, a finding validated in an independent data set. This study emphasizes the importance of pretreatment adaptive immune response in treatment efficacy and suggests biological pathways that can be targeted to improve response. |
format | Online Article Text |
id | pubmed-10230428 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Fondazione Ferrata Storti |
record_format | MEDLINE/PubMed |
spelling | pubmed-102304282023-06-01 Molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis Radich, Jerald P. Wall, Matthew Branford, Susan Campbell, Catarina D. Chaturvedi, Shalini DeAngelo, Daniel J. Deininger, Michael W. Guinney, Justin Hochhaus, Andreas Hughes, Timothy P. Kantarjian, Hagop M. Larson, Richard A. Li, Sai Maegawa, Rodrigo Mishra, Kaushal Obourn, Vanessa Pinilla-Ibarz, Javier Purkayastha, Das Sadek, Islam Saglio, Giuseppe Shrestha, Alok White, Brian S. Druker, Brian J. Haematologica Article - Chronic Myeloid Leukemia Tyrosine kinase inhibitor therapy revolutionized chronic myeloid leukemia treatment and showed how targeted therapy and molecular monitoring could be used to substantially improve survival outcomes. We used chronic myeloid leukemia as a model to understand a critical question: why do some patients have an excellent response to therapy, while others have a poor response? We studied gene expression in whole blood samples from 112 patients from a large phase III randomized trial (clinicaltrials gov. Identifier: NCT00471497), dichotomizing cases into good responders (BCR::ABL1 ≤10% on the International Scale by 3 and 6 months and ≤0.1% by 12 months) and poor responders (failure to meet these criteria). Predictive models based on gene expression demonstrated the best performance (area under the curve =0.76, standard deviation =0.07). All of the top 20 pathways overexpressed in good responders involved immune regulation, a finding validated in an independent data set. This study emphasizes the importance of pretreatment adaptive immune response in treatment efficacy and suggests biological pathways that can be targeted to improve response. Fondazione Ferrata Storti 2023-02-02 /pmc/articles/PMC10230428/ /pubmed/36727397 http://dx.doi.org/10.3324/haematol.2022.281878 Text en Copyright© 2023 Ferrata Storti Foundation https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Article - Chronic Myeloid Leukemia Radich, Jerald P. Wall, Matthew Branford, Susan Campbell, Catarina D. Chaturvedi, Shalini DeAngelo, Daniel J. Deininger, Michael W. Guinney, Justin Hochhaus, Andreas Hughes, Timothy P. Kantarjian, Hagop M. Larson, Richard A. Li, Sai Maegawa, Rodrigo Mishra, Kaushal Obourn, Vanessa Pinilla-Ibarz, Javier Purkayastha, Das Sadek, Islam Saglio, Giuseppe Shrestha, Alok White, Brian S. Druker, Brian J. Molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis |
title | Molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis |
title_full | Molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis |
title_fullStr | Molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis |
title_full_unstemmed | Molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis |
title_short | Molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis |
title_sort | molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis |
topic | Article - Chronic Myeloid Leukemia |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230428/ https://www.ncbi.nlm.nih.gov/pubmed/36727397 http://dx.doi.org/10.3324/haematol.2022.281878 |
work_keys_str_mv | AT radichjeraldp molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT wallmatthew molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT branfordsusan molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT campbellcatarinad molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT chaturvedishalini molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT deangelodanielj molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT deiningermichaelw molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT guinneyjustin molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT hochhausandreas molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT hughestimothyp molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT kantarjianhagopm molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT larsonricharda molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT lisai molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT maegawarodrigo molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT mishrakaushal molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT obournvanessa molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT pinillaibarzjavier molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT purkayasthadas molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT sadekislam molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT sagliogiuseppe molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT shresthaalok molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT whitebrians molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis AT drukerbrianj molecularresponseinnewlydiagnosedchronicphasechronicmyeloidleukemiapredictionmodelingandpathwayanalysis |