Cargando…

Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data

Detalles Bibliográficos
Autores principales: Ren, Zilin, Li, Quan, Cao, Kajia, Li, Marilyn M., Zhou, Yunyun, Wang, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230664/
https://www.ncbi.nlm.nih.gov/pubmed/37259034
http://dx.doi.org/10.1186/s12859-023-05357-2
_version_ 1785051582653530112
author Ren, Zilin
Li, Quan
Cao, Kajia
Li, Marilyn M.
Zhou, Yunyun
Wang, Kai
author_facet Ren, Zilin
Li, Quan
Cao, Kajia
Li, Marilyn M.
Zhou, Yunyun
Wang, Kai
author_sort Ren, Zilin
collection PubMed
description
format Online
Article
Text
id pubmed-10230664
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-102306642023-06-01 Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data Ren, Zilin Li, Quan Cao, Kajia Li, Marilyn M. Zhou, Yunyun Wang, Kai BMC Bioinformatics Correction BioMed Central 2023-05-31 /pmc/articles/PMC10230664/ /pubmed/37259034 http://dx.doi.org/10.1186/s12859-023-05357-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Correction
Ren, Zilin
Li, Quan
Cao, Kajia
Li, Marilyn M.
Zhou, Yunyun
Wang, Kai
Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
title Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
title_full Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
title_fullStr Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
title_full_unstemmed Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
title_short Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
title_sort correction: model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
topic Correction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230664/
https://www.ncbi.nlm.nih.gov/pubmed/37259034
http://dx.doi.org/10.1186/s12859-023-05357-2
work_keys_str_mv AT renzilin correctionmodelperformanceandinterpretabilityofsemisupervisedgenerativeadversarialnetworkstopredictoncogenicvariantswithunlabeleddata
AT liquan correctionmodelperformanceandinterpretabilityofsemisupervisedgenerativeadversarialnetworkstopredictoncogenicvariantswithunlabeleddata
AT caokajia correctionmodelperformanceandinterpretabilityofsemisupervisedgenerativeadversarialnetworkstopredictoncogenicvariantswithunlabeleddata
AT limarilynm correctionmodelperformanceandinterpretabilityofsemisupervisedgenerativeadversarialnetworkstopredictoncogenicvariantswithunlabeleddata
AT zhouyunyun correctionmodelperformanceandinterpretabilityofsemisupervisedgenerativeadversarialnetworkstopredictoncogenicvariantswithunlabeleddata
AT wangkai correctionmodelperformanceandinterpretabilityofsemisupervisedgenerativeadversarialnetworkstopredictoncogenicvariantswithunlabeleddata