Cargando…
Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
Autores principales: | Ren, Zilin, Li, Quan, Cao, Kajia, Li, Marilyn M., Zhou, Yunyun, Wang, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230664/ https://www.ncbi.nlm.nih.gov/pubmed/37259034 http://dx.doi.org/10.1186/s12859-023-05357-2 |
Ejemplares similares
-
Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
por: Ren, Zilin, et al.
Publicado: (2023) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
CancerVar: An artificial intelligence–empowered platform for clinical interpretation of somatic mutations in cancer
por: Li, Quan, et al.
Publicado: (2022) -
Semi-supervised learning improves regulatory sequence prediction with unlabeled sequences
por: Mourad, Raphaël
Publicado: (2023) -
Semi-supervised prediction of protein interaction sites from unlabeled sample information
por: Wang, Ye, et al.
Publicado: (2019)