Cargando…

Omission responses in local field potentials in rat auditory cortex

BACKGROUND: Non-invasive recordings of gross neural activity in humans often show responses to omitted stimuli in steady trains of identical stimuli. This has been taken as evidence for the neural coding of prediction or prediction error. However, evidence for such omission responses from invasive r...

Descripción completa

Detalles Bibliográficos
Autores principales: Auksztulewicz, Ryszard, Rajendran, Vani Gurusamy, Peng, Fei, Schnupp, Jan Wilbert Hendrik, Harper, Nicol Spencer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230691/
https://www.ncbi.nlm.nih.gov/pubmed/37254137
http://dx.doi.org/10.1186/s12915-023-01592-4
Descripción
Sumario:BACKGROUND: Non-invasive recordings of gross neural activity in humans often show responses to omitted stimuli in steady trains of identical stimuli. This has been taken as evidence for the neural coding of prediction or prediction error. However, evidence for such omission responses from invasive recordings of cellular-scale responses in animal models is scarce. Here, we sought to characterise omission responses using extracellular recordings in the auditory cortex of anaesthetised rats. We profiled omission responses across local field potentials (LFP), analogue multiunit activity (AMUA), and single/multi-unit spiking activity, using stimuli that were fixed-rate trains of acoustic noise bursts where 5% of bursts were randomly omitted. RESULTS: Significant omission responses were observed in LFP and AMUA signals, but not in spiking activity. These omission responses had a lower amplitude and longer latency than burst-evoked sensory responses, and omission response amplitude increased as a function of the number of preceding bursts. CONCLUSIONS: Together, our findings show that omission responses are most robustly observed in LFP and AMUA signals (relative to spiking activity). This has implications for models of cortical processing that require many neurons to encode prediction errors in their spike output.