Cargando…

Polyalanine polymorphism in the signal peptide of Glutathione peroxidase 1 (GPX1) gene & its association with osteoporosis

BACKGROUND & OBJECTIVES: Osteoporosis is a systemic skeletal disease, characterized by a low bone mass leading to increased bone fragility and hence, a greater susceptibility to the risk of fracture. Since age-related oxidative stress is one of the factors that has been implicated in developing...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahuja, Soni Ghumnani, Shahu, Arjun, Rath, Subrata, Adkar, Neeraj, Shouche, Yogesh, Ghaskadbi, Saroj, Ashma, Richa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231753/
https://www.ncbi.nlm.nih.gov/pubmed/36926781
http://dx.doi.org/10.4103/ijmr.IJMR_208_20
Descripción
Sumario:BACKGROUND & OBJECTIVES: Osteoporosis is a systemic skeletal disease, characterized by a low bone mass leading to increased bone fragility and hence, a greater susceptibility to the risk of fracture. Since age-related oxidative stress is one of the factors that has been implicated in developing low bone mineral density (BMD), leading to osteoporosis, this study wanted to explore the expression of antioxidant enzymes in individuals with osteoporosis. The present study focused on mapping polymorphism in an important antioxidant enzyme glutathione peroxidase 1 (GPx1) among osteoporosis and healthy Asian Indians. METHODS: Dual-energy X-ray absorptiometry was used to assess BMD of individuals and was classified into normal (n=96) and osteoporotic (n=88) groups. Biochemical parameters such as vitamin D, total oxidant status (TOS), and GPx1 enzyme activity were estimated from plasma samples of recruited individuals. Quantitative real-time qRT-PCR was carried out using GAPDH as an endogenous control. Genomic DNA was isolated from whole blood, and polymorphisms were evaluated by sequencing. RESULTS: The BMD was lower in osteoporotic individuals, and further analysis of biochemical parameters indicated significantly low 25-hydroxy vitamin D and GPx1 with higher TOS levels in osteoporotic as compared to healthy individuals. Furthermore, qRT-PCR revealed low expression of GPX1 in osteoporotic individuals. GPX1 sequence analysis of the promoter and two exons revealed the lower frequency of five alanine repeats in the osteoporotic individuals. INTERPRETATION & CONCLUSIONS: In this study, the in silico analysis revealed the lower frequency of five alanine repeats in exon 1 of GPX1 and high TOS to be associated with osteoporosis. However, no polymorphism was found in exon 2 of GPX1 among the two study groups.