Cargando…
Structure learning for gene regulatory networks
Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput “omics” data typically available. To overcome this challenge, often referred to as the “small n, large p problem,” we exploit known organizing princip...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231840/ https://www.ncbi.nlm.nih.gov/pubmed/37200395 http://dx.doi.org/10.1371/journal.pcbi.1011118 |
Sumario: | Inference of biological network structures is often performed on high-dimensional data, yet is hindered by the limited sample size of high throughput “omics” data typically available. To overcome this challenge, often referred to as the “small n, large p problem,” we exploit known organizing principles of biological networks that are sparse, modular, and likely share a large portion of their underlying architecture. We present SHINE—Structure Learning for Hierarchical Networks—a framework for defining data-driven structural constraints and incorporating a shared learning paradigm for efficiently learning multiple Markov networks from high-dimensional data at large p/n ratios not previously feasible. We evaluated SHINE on Pan-Cancer data comprising 23 tumor types, and found that learned tumor-specific networks exhibit expected graph properties of real biological networks, recapture previously validated interactions, and recapitulate findings in literature. Application of SHINE to the analysis of subtype-specific breast cancer networks identified key genes and biological processes for tumor maintenance and survival as well as potential therapeutic targets for modulating known breast cancer disease genes. |
---|