Cargando…

Quercetin inhibits body weight gain and adipogenesis via matrix metalloproteinases in mice fed a high-fat diet

BACKGROUND/OBJECTIVES: Limited studies reported that quercetin inhibited adipogenesis and neovascularization by inhibiting matrix metalloproteinases (MMPs) activity, but such mechanisms have not been elucidated in animal experiments. In this study, we investigated the inhibitory effects of quercetin...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, SeungMin, Ha, Ae Wha, Kim, WooKyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Nutrition Society and the Korean Society of Community Nutrition 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232201/
https://www.ncbi.nlm.nih.gov/pubmed/37266112
http://dx.doi.org/10.4162/nrp.2023.17.3.438
Descripción
Sumario:BACKGROUND/OBJECTIVES: Limited studies reported that quercetin inhibited adipogenesis and neovascularization by inhibiting matrix metalloproteinases (MMPs) activity, but such mechanisms have not been elucidated in animal experiments. In this study, we investigated the inhibitory effects of quercetin on weight gain and adipose tissue growth through the regulation of mRNA expressions of adipogenic transcription factors and MMPs in mice fed a high-fat diet (HFD). MATERIALS/METHODS: Five-wk-old C57BL/6J mice were fed a normal diet (ND), HFD, HFD containing 0.05% of quercetin (HFQ0.05), or HFD containing 0.15% of quercetin (HFQ0.15) for 16 wks. Glycerol-3-phosphate dehydrogenase (GPDH) activity was measured using a commercial kit. The mRNA expressions of transcription factors related to adipocyte differentiation were determined by real-time polymerase chain reaction (PCR). The mRNA expressions of MMPs and concentrations of MMPs were measured by real-time PCR and enzyme-linked immunosorbent assay kit, respectively. RESULTS: Quercetin intake reduced body weight gain and epididymal adipose tissue weights (P < 0.05). GPDH activity was higher in the HFD group than in the ND group but lower in the quercetin groups (P < 0.05). The mRNA expressions of CCAAT/enhancer binding protein β (C/EBPβ), C/EBPα, peroxisome proliferator-activated receptor γ, and fatty acid-binding protein 4 were lower in the quercetin groups than in the HFD group (P < 0.05). Similarly, the mRNA expression and concentrations of MMP-2 and MMP-9 were significantly lower in the quercetin groups than in the HFD group (P < 0.05). CONCLUSION: The study confirms that quercetin suppresses body weight gain and adipogenesis by inhibiting transcription factors related to adipocyte differentiation and MMPs (MMP-2 and MMP-9), in mice fed a HFD.