Cargando…
Correlation between artificial intelligence-enabled electrocardiogram and echocardiographic features in aortic stenosis
AIMS: An artificial intelligence-enabled electrocardiogram (AI-ECG) is a promising tool to detect patients with aortic stenosis (AS) before developing symptoms. However, functional, structural, or haemodynamic components reflected in AI-ECG responsible for its detection are unknown. METHODS AND RESU...
Autores principales: | Ito, Saki, Cohen-Shelly, Michal, Attia, Zachi I, Lee, Eunjung, Friedman, Paul A, Nkomo, Vuyisile T, Michelena, Hector I, Noseworthy, Peter A, Lopez-Jimenez, Francisco, Oh, Jae K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232245/ https://www.ncbi.nlm.nih.gov/pubmed/37265870 http://dx.doi.org/10.1093/ehjdh/ztad009 |
Ejemplares similares
-
A comprehensive artificial intelligence–enabled electrocardiogram interpretation program
por: Kashou, Anthony H., et al.
Publicado: (2020) -
Recurrent cryptogenic stroke: A potential role for an artificial intelligence–enabled electrocardiogram?
por: Kashou, Anthony H., et al.
Publicado: (2020) -
Spectrum bias in algorithms derived by artificial intelligence: a case study in detecting aortic stenosis using electrocardiograms
por: Tseng, Andrew S, et al.
Publicado: (2021) -
Real-world performance, long-term efficacy, and absence of bias in the artificial intelligence enhanced electrocardiogram to detect left ventricular systolic dysfunction
por: Harmon, David M, et al.
Publicado: (2022) -
Electrocardiogram-Artificial Intelligence and Immune-Mediated Necrotizing Myopathy: Predicting Left Ventricular Dysfunction and Clinical Outcomes
por: Klein, Christopher J., et al.
Publicado: (2022)