Cargando…
Machine learning-based risk stratification for mortality in patients with severe aortic regurgitation
AIMS: The current guidelines recommend aortic valve intervention in patients with severe aortic regurgitation (AR) with the onset of symptoms, left ventricular enlargement, or systolic dysfunction. Recent studies have suggested that we might be missing the window of early intervention in a significa...
Autores principales: | Anand, Vidhu, Hu, Hanwen, Weston, Alexander D, Scott, Christopher G, Michelena, Hector I, Pislaru, Sorin V, Carter, Rickey E, Pellikka, Patricia A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232267/ https://www.ncbi.nlm.nih.gov/pubmed/37265866 http://dx.doi.org/10.1093/ehjdh/ztad006 |
Ejemplares similares
-
Machine learning facilitates the prediction of long-term mortality in patients with tricuspid regurgitation
por: Deb, Brototo, et al.
Publicado: (2023) -
Impact of aortic valve replacement for severe aortic stenosis on organic and functional mitral regurgitation
por: Kato, Nahoko, et al.
Publicado: (2021) -
Severe pulmonic valve regurgitation due to histoplasma endocarditis
por: Konik, Ewa A, et al.
Publicado: (2015) -
Mechanisms of Rare Unicuspid Aortic Valve With Predominant Aortic Regurgitation Uncovered by Multimodality Imaging
por: Yang, Li-Tan, et al.
Publicado: (2020) -
Characterization of myocardial mechanics and its prognostic significance in patients with severe aortic stenosis undergoing aortic valve replacement
por: Bi, Xiaojun, et al.
Publicado: (2022)