Cargando…
Use of machine learning algorithms to predict life-threatening ventricular arrhythmia in sepsis
AIMS: Life-threatening ventricular arrhythmias (LTVAs) are common manifestations of sepsis. The majority of sepsis patients with LTVA are unresponsive to initial standard treatment and thus have a poor prognosis. There are very limited studies focusing on the early identification of patients at high...
Autores principales: | Li, Le, Zhang, Zhuxin, Zhou, Likun, Zhang, Zhenhao, Xiong, Yulong, Hu, Zhao, Yao, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232270/ https://www.ncbi.nlm.nih.gov/pubmed/37265863 http://dx.doi.org/10.1093/ehjdh/ztad025 |
Ejemplares similares
-
Development and Validation of Machine Learning–Based Models to Predict In-Hospital Mortality in Life-Threatening Ventricular Arrhythmias: Retrospective Cohort Study
por: Li, Le, et al.
Publicado: (2023) -
Correction to: Use of machine learning algorithms to predict life-threatening ventricular arrhythmia in sepsis
Publicado: (2023) -
Causal effects between atrial fibrillation and heart failure: evidence from a bidirectional Mendelian randomization study
por: Zhang, Zhuxin, et al.
Publicado: (2023) -
Loperamide Induced Life Threatening Ventricular Arrhythmia
por: Upadhyay, Ankit, et al.
Publicado: (2016) -
Prognostic significance of the stress hyperglycemia ratio in critically ill patients
por: Li, Le, et al.
Publicado: (2023)