Cargando…
What drives performance in machine learning models for predicting heart failure outcome?
AIMS: The development of acute heart failure (AHF) is a critical decision point in the natural history of the disease and carries a dismal prognosis. The lack of appropriate risk-stratification tools at hospital discharge of AHF patients significantly limits clinical ability to precisely tailor pati...
Autores principales: | Gutman, Rom, Aronson, Doron, Caspi, Oren, Shalit, Uri |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232285/ https://www.ncbi.nlm.nih.gov/pubmed/37265860 http://dx.doi.org/10.1093/ehjdh/ztac054 |
Ejemplares similares
-
Morphine in the Setting of Acute Heart Failure: Do the Risks Outweigh the Benefits?
por: Caspi, Oren, et al.
Publicado: (2020) -
Surviving Cancer without a Broken Heart
por: Caspi, Oren, et al.
Publicado: (2019) -
Development and validation of a machine learning model predicting illness trajectory and hospital utilization of COVID-19 patients: A nationwide study
por: Roimi, Michael, et al.
Publicado: (2021) -
The interstitial compartment as a therapeutic target in heart failure
por: Aronson, Doron
Publicado: (2022) -
Environmental factors, winter respiratory infections and the seasonal variation in heart failure admissions
por: Aronson, Doron
Publicado: (2021)