Cargando…

Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores

AIMS: Identification of high-risk patients and individualized decision support based on objective criteria for rapid discharge after transcatheter aortic valve implantation (TAVI) are key requirements in the context of contemporary TAVI treatment. This study aimed to predict 30-day mortality followi...

Descripción completa

Detalles Bibliográficos
Autores principales: Leha, Andreas, Huber, Cynthia, Friede, Tim, Bauer, Timm, Beckmann, Andreas, Bekeredjian, Raffi, Bleiziffer, Sabine, Herrmann, Eva, Möllmann, Helge, Walther, Thomas, Beyersdorf, Friedhelm, Hamm, Christian, Künzi, Arnaud, Windecker, Stephan, Stortecky, Stefan, Kutschka, Ingo, Hasenfuß, Gerd, Ensminger, Stephan, Frerker, Christian, Seidler, Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232286/
https://www.ncbi.nlm.nih.gov/pubmed/37265865
http://dx.doi.org/10.1093/ehjdh/ztad021
_version_ 1785051940324900864
author Leha, Andreas
Huber, Cynthia
Friede, Tim
Bauer, Timm
Beckmann, Andreas
Bekeredjian, Raffi
Bleiziffer, Sabine
Herrmann, Eva
Möllmann, Helge
Walther, Thomas
Beyersdorf, Friedhelm
Hamm, Christian
Künzi, Arnaud
Windecker, Stephan
Stortecky, Stefan
Kutschka, Ingo
Hasenfuß, Gerd
Ensminger, Stephan
Frerker, Christian
Seidler, Tim
author_facet Leha, Andreas
Huber, Cynthia
Friede, Tim
Bauer, Timm
Beckmann, Andreas
Bekeredjian, Raffi
Bleiziffer, Sabine
Herrmann, Eva
Möllmann, Helge
Walther, Thomas
Beyersdorf, Friedhelm
Hamm, Christian
Künzi, Arnaud
Windecker, Stephan
Stortecky, Stefan
Kutschka, Ingo
Hasenfuß, Gerd
Ensminger, Stephan
Frerker, Christian
Seidler, Tim
author_sort Leha, Andreas
collection PubMed
description AIMS: Identification of high-risk patients and individualized decision support based on objective criteria for rapid discharge after transcatheter aortic valve implantation (TAVI) are key requirements in the context of contemporary TAVI treatment. This study aimed to predict 30-day mortality following TAVI based on machine learning (ML) using data from the German Aortic Valve Registry. METHODS AND RESULTS: Mortality risk was determined using a random forest ML model that was condensed in the newly developed TAVI Risk Machine (TRIM) scores, designed to represent clinically meaningful risk modelling before (TRIMpre) and in particular after (TRIMpost) TAVI. Algorithm was trained and cross-validated on data of 22 283 patients (729 died within 30 days post-TAVI) and generalisation was examined on data of 5864 patients (146 died). TRIMpost demonstrated significantly better performance than traditional scores [C-statistics value, 0.79; 95% confidence interval (CI)] [0.74; 0.83] compared to Society of Thoracic Surgeons (STS) with C-statistics value 0.69; 95%-CI [0.65; 0.74]). An abridged (aTRIMpost) score comprising 25 features (calculated using a web interface) exhibited significantly higher performance than traditional scores (C-statistics value, 0.74; 95%-CI [0.70; 0.78]). Validation on external data of 6693 patients (205 died within 30 days post-TAVI) of the Swiss TAVI Registry confirmed significantly better performance for the TRIMpost (C-statistics value 0.75, 95%-CI [0.72; 0.79]) compared to STS (C-statistics value 0.67, CI [0.63; 0.70]). CONCLUSION: TRIM scores demonstrate good performance for risk estimation before and after TAVI. Together with clinical judgement, they may support standardised and objective decision-making before and after TAVI.
format Online
Article
Text
id pubmed-10232286
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102322862023-06-01 Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores Leha, Andreas Huber, Cynthia Friede, Tim Bauer, Timm Beckmann, Andreas Bekeredjian, Raffi Bleiziffer, Sabine Herrmann, Eva Möllmann, Helge Walther, Thomas Beyersdorf, Friedhelm Hamm, Christian Künzi, Arnaud Windecker, Stephan Stortecky, Stefan Kutschka, Ingo Hasenfuß, Gerd Ensminger, Stephan Frerker, Christian Seidler, Tim Eur Heart J Digit Health Original Article AIMS: Identification of high-risk patients and individualized decision support based on objective criteria for rapid discharge after transcatheter aortic valve implantation (TAVI) are key requirements in the context of contemporary TAVI treatment. This study aimed to predict 30-day mortality following TAVI based on machine learning (ML) using data from the German Aortic Valve Registry. METHODS AND RESULTS: Mortality risk was determined using a random forest ML model that was condensed in the newly developed TAVI Risk Machine (TRIM) scores, designed to represent clinically meaningful risk modelling before (TRIMpre) and in particular after (TRIMpost) TAVI. Algorithm was trained and cross-validated on data of 22 283 patients (729 died within 30 days post-TAVI) and generalisation was examined on data of 5864 patients (146 died). TRIMpost demonstrated significantly better performance than traditional scores [C-statistics value, 0.79; 95% confidence interval (CI)] [0.74; 0.83] compared to Society of Thoracic Surgeons (STS) with C-statistics value 0.69; 95%-CI [0.65; 0.74]). An abridged (aTRIMpost) score comprising 25 features (calculated using a web interface) exhibited significantly higher performance than traditional scores (C-statistics value, 0.74; 95%-CI [0.70; 0.78]). Validation on external data of 6693 patients (205 died within 30 days post-TAVI) of the Swiss TAVI Registry confirmed significantly better performance for the TRIMpost (C-statistics value 0.75, 95%-CI [0.72; 0.79]) compared to STS (C-statistics value 0.67, CI [0.63; 0.70]). CONCLUSION: TRIM scores demonstrate good performance for risk estimation before and after TAVI. Together with clinical judgement, they may support standardised and objective decision-making before and after TAVI. Oxford University Press 2023-03-17 /pmc/articles/PMC10232286/ /pubmed/37265865 http://dx.doi.org/10.1093/ehjdh/ztad021 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Original Article
Leha, Andreas
Huber, Cynthia
Friede, Tim
Bauer, Timm
Beckmann, Andreas
Bekeredjian, Raffi
Bleiziffer, Sabine
Herrmann, Eva
Möllmann, Helge
Walther, Thomas
Beyersdorf, Friedhelm
Hamm, Christian
Künzi, Arnaud
Windecker, Stephan
Stortecky, Stefan
Kutschka, Ingo
Hasenfuß, Gerd
Ensminger, Stephan
Frerker, Christian
Seidler, Tim
Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores
title Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores
title_full Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores
title_fullStr Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores
title_full_unstemmed Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores
title_short Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores
title_sort development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: tavi risk machine scores
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232286/
https://www.ncbi.nlm.nih.gov/pubmed/37265865
http://dx.doi.org/10.1093/ehjdh/ztad021
work_keys_str_mv AT lehaandreas developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT hubercynthia developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT friedetim developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT bauertimm developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT beckmannandreas developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT bekeredjianraffi developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT bleiziffersabine developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT herrmanneva developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT mollmannhelge developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT waltherthomas developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT beyersdorffriedhelm developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT hammchristian developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT kunziarnaud developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT windeckerstephan developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT storteckystefan developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT kutschkaingo developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT hasenfußgerd developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT ensmingerstephan developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT frerkerchristian developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores
AT seidlertim developmentandvalidationofexplainablemachinelearningmodelsforriskofmortalityintranscatheteraorticvalveimplantationtaviriskmachinescores