Cargando…
Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores
AIMS: Identification of high-risk patients and individualized decision support based on objective criteria for rapid discharge after transcatheter aortic valve implantation (TAVI) are key requirements in the context of contemporary TAVI treatment. This study aimed to predict 30-day mortality followi...
Autores principales: | Leha, Andreas, Huber, Cynthia, Friede, Tim, Bauer, Timm, Beckmann, Andreas, Bekeredjian, Raffi, Bleiziffer, Sabine, Herrmann, Eva, Möllmann, Helge, Walther, Thomas, Beyersdorf, Friedhelm, Hamm, Christian, Künzi, Arnaud, Windecker, Stephan, Stortecky, Stefan, Kutschka, Ingo, Hasenfuß, Gerd, Ensminger, Stephan, Frerker, Christian, Seidler, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232286/ https://www.ncbi.nlm.nih.gov/pubmed/37265865 http://dx.doi.org/10.1093/ehjdh/ztad021 |
Ejemplares similares
-
Propensity matched comparison of TAVI and SAVR in intermediate-risk patients with severe aortic stenosis and moderate-to-severe chronic kidney disease: a subgroup analysis from the German Aortic Valve Registry
por: Mas-Peiro, Silvia, et al.
Publicado: (2022) -
Concomitant mitral regurgitation in patients with low-gradient aortic stenosis: an analysis from the German Aortic Valve Registry
por: Alushi, Brunilda, et al.
Publicado: (2022) -
A machine learning approach for the prediction of pulmonary hypertension
por: Leha, Andreas, et al.
Publicado: (2019) -
Clinical Outcome of High-Risk Patients with Severe Aortic Stenosis and Reduced Left Ventricular Ejection Fraction Undergoing Medical Treatment or TAVI
por: Pilgrim, Thomas, et al.
Publicado: (2011) -
Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: a systematic review with recommendations
por: Friedrich, Sarah, et al.
Publicado: (2021)