Cargando…
Automatic screening of patients with atrial fibrillation from 24-h Holter recording using deep learning
AIMS: As the demand for atrial fibrillation (AF) screening increases, clinicians spend a significant amount of time identifying AF signals from massive amounts of data obtained during long-term dynamic electrocardiogram (ECG) monitoring. The identification of AF signals is subjective and depends on...
Autores principales: | Zhang, Peng, Lin, Fan, Ma, Fei, Chen, Yuting, Fang, Siyi, Zheng, Haiyan, Xiang, Zuwen, Yang, Xiaoyun, Li, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232289/ https://www.ncbi.nlm.nih.gov/pubmed/37265871 http://dx.doi.org/10.1093/ehjdh/ztad018 |
Ejemplares similares
-
Assessment of the atrial fibrillation burden in Holter ECG recordings using artificial intelligence
por: Hennings, E, et al.
Publicado: (2023) -
Comparison of heart rate obtained from shorter duration Holter recordings to 24-hour mean heart rate in dogs with atrial fibrillation
por: Gunasekaran, Tamilselvam, et al.
Publicado: (2020) -
An Artificial Intelligence Algorithm With 24-h Holter Monitoring for the Identification of Occult Atrial Fibrillation During Sinus Rhythm
por: Kim, Ju Youn, et al.
Publicado: (2022) -
Variation in heart rate range by 24‐h Holter monitoring predicts heart failure in patients with atrial fibrillation
por: Oikawa, Jun, et al.
Publicado: (2022) -
Relationship between silent atrial fibrillation and the maximum heart rate in the 24-hour Holter: cross-sectional study
por: Kruse, Marcelo Lapa, et al.
Publicado: (2014)