Cargando…

A fast methodology for generating skeletal FEM with detailed human geometric features based on CPD and RBF algorithms

Due to the significant effects of the human anatomical characteristics on the injury mechanism of passenger in traffic accidents, it is necessary to develop human body FEM (Finite Element Model) with detailed anatomical characteristics. However, traditional development of a human body FEM is an extr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Qiuqi, Jiang, Binhui, Zhu, Xiaoming, Hu, Jingzhou, Wang, Yulong, Chou, Clifford C., Xu, Shiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232415/
https://www.ncbi.nlm.nih.gov/pubmed/37258627
http://dx.doi.org/10.1038/s41598-023-35374-3
Descripción
Sumario:Due to the significant effects of the human anatomical characteristics on the injury mechanism of passenger in traffic accidents, it is necessary to develop human body FEM (Finite Element Model) with detailed anatomical characteristics. However, traditional development of a human body FEM is an extremely complicated process. In particular, the meshing of human body is a huge and time-consuming project. In this paper, a new fast methodology based on CPD (Coherent Point Drift) and RBF (Radial Basis Function) was proposed to achieve the rapid developing the FEM of human bone with detailed anatomical characteristics. In this methodology, the mesh morphing technology based the RBF was used to generate FEM mesh in the geometry extracted from the target CT (Computed Tomography) data. In order to further improve the accuracy and speed of mesh morphing, the target geometric feature points required in the mesh morphing process were realized via the rapid and automatic generation based on the point-cloud registration technology of the CPD algorithm. Finally, this new methodology was used to generate a 3-year-old ribcage FEM consisting of a total of 27,728 elements with mesh size 3–5 mm based on the THUMS (Total Human Model for Safety) adult model. In the entire process of generating this new ribcage model, it only took about 2.7 s. The average error between the new FEM and target geometries was only about 2.7 mm. This indicated that the new FEM well described the detailed anatomical characteristics of target geometry, thus importantly revealing that the mesh quality of the new FEM was basically similar to that of source FEM.