Cargando…
Machine learning-assisted crystal engineering of a zeolite
It is shown that Machine Learning (ML) algorithms can usefully capture the effect of crystallization composition and conditions (inputs) on key microstructural characteristics (outputs) of faujasite type zeolites (structure types FAU, EMT, and their intergrowths), which are widely used zeolite catal...
Autores principales: | Li, Xinyu, Han, He, Evangelou, Nikolaos, Wichrowski, Noah J., Lu, Peng, Xu, Wenqian, Hwang, Son-Jong, Zhao, Wenyang, Song, Chunshan, Guo, Xinwen, Bhan, Aditya, Kevrekidis, Ioannis G., Tsapatsis, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232492/ https://www.ncbi.nlm.nih.gov/pubmed/37258522 http://dx.doi.org/10.1038/s41467-023-38738-5 |
Ejemplares similares
-
On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
por: Evangelou, Nikolaos, et al.
Publicado: (2022) -
Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets
por: Kumar, Prashant, et al.
Publicado: (2015) -
Engineering of zeolite BEA crystal size and morphology via seed-directed steam assisted conversion
por: Bok, Tatiana O., et al.
Publicado: (2020) -
Interplay between hydrophilicity and surface barriers on water transport in zeolite membranes
por: Fasano, Matteo, et al.
Publicado: (2016) -
Zeolite-like liquid crystals
por: Poppe, Silvio, et al.
Publicado: (2015)