Cargando…

Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study

The use of deep learning (DL) techniques for automated diagnosis of large vessel occlusion (LVO) and collateral scoring on computed tomography angiography (CTA) is gaining attention. In this study, a state-of-the-art self-configuring object detection network called nnDetection was used to detect LVO...

Descripción completa

Detalles Bibliográficos
Autores principales: Bagcilar, Omer, Alis, Deniz, Alis, Ceren, Seker, Mustafa Ege, Yergin, Mert, Ustundag, Ahmet, Hikmet, Emil, Tezcan, Alperen, Polat, Gokhan, Akkus, Ahmet Tugrul, Alper, Fatih, Velioglu, Murat, Yildiz, Omer, Selcuk, Hakan Hatem, Oksuz, Ilkay, Kizilkilic, Osman, Karaarslan, Ercan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232534/
https://www.ncbi.nlm.nih.gov/pubmed/37258516
http://dx.doi.org/10.1038/s41598-023-33723-w
_version_ 1785052002428911616
author Bagcilar, Omer
Alis, Deniz
Alis, Ceren
Seker, Mustafa Ege
Yergin, Mert
Ustundag, Ahmet
Hikmet, Emil
Tezcan, Alperen
Polat, Gokhan
Akkus, Ahmet Tugrul
Alper, Fatih
Velioglu, Murat
Yildiz, Omer
Selcuk, Hakan Hatem
Oksuz, Ilkay
Kizilkilic, Osman
Karaarslan, Ercan
author_facet Bagcilar, Omer
Alis, Deniz
Alis, Ceren
Seker, Mustafa Ege
Yergin, Mert
Ustundag, Ahmet
Hikmet, Emil
Tezcan, Alperen
Polat, Gokhan
Akkus, Ahmet Tugrul
Alper, Fatih
Velioglu, Murat
Yildiz, Omer
Selcuk, Hakan Hatem
Oksuz, Ilkay
Kizilkilic, Osman
Karaarslan, Ercan
author_sort Bagcilar, Omer
collection PubMed
description The use of deep learning (DL) techniques for automated diagnosis of large vessel occlusion (LVO) and collateral scoring on computed tomography angiography (CTA) is gaining attention. In this study, a state-of-the-art self-configuring object detection network called nnDetection was used to detect LVO and assess collateralization on CTA scans using a multi-task 3D object detection approach. The model was trained on single-phase CTA scans of 2425 patients at five centers, and its performance was evaluated on an external test set of 345 patients from another center. Ground-truth labels for the presence of LVO and collateral scores were provided by three radiologists. The nnDetection model achieved a diagnostic accuracy of 98.26% (95% CI 96.25–99.36%) in identifying LVO, correctly classifying 339 out of 345 CTA scans in the external test set. The DL-based collateral scores had a kappa of 0.80, indicating good agreement with the consensus of the radiologists. These results demonstrate that the self-configuring 3D nnDetection model can accurately detect LVO on single-phase CTA scans and provide semi-quantitative collateral scores, offering a comprehensive approach for automated stroke diagnostics in patients with LVO.
format Online
Article
Text
id pubmed-10232534
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-102325342023-06-02 Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study Bagcilar, Omer Alis, Deniz Alis, Ceren Seker, Mustafa Ege Yergin, Mert Ustundag, Ahmet Hikmet, Emil Tezcan, Alperen Polat, Gokhan Akkus, Ahmet Tugrul Alper, Fatih Velioglu, Murat Yildiz, Omer Selcuk, Hakan Hatem Oksuz, Ilkay Kizilkilic, Osman Karaarslan, Ercan Sci Rep Article The use of deep learning (DL) techniques for automated diagnosis of large vessel occlusion (LVO) and collateral scoring on computed tomography angiography (CTA) is gaining attention. In this study, a state-of-the-art self-configuring object detection network called nnDetection was used to detect LVO and assess collateralization on CTA scans using a multi-task 3D object detection approach. The model was trained on single-phase CTA scans of 2425 patients at five centers, and its performance was evaluated on an external test set of 345 patients from another center. Ground-truth labels for the presence of LVO and collateral scores were provided by three radiologists. The nnDetection model achieved a diagnostic accuracy of 98.26% (95% CI 96.25–99.36%) in identifying LVO, correctly classifying 339 out of 345 CTA scans in the external test set. The DL-based collateral scores had a kappa of 0.80, indicating good agreement with the consensus of the radiologists. These results demonstrate that the self-configuring 3D nnDetection model can accurately detect LVO on single-phase CTA scans and provide semi-quantitative collateral scores, offering a comprehensive approach for automated stroke diagnostics in patients with LVO. Nature Publishing Group UK 2023-05-31 /pmc/articles/PMC10232534/ /pubmed/37258516 http://dx.doi.org/10.1038/s41598-023-33723-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Bagcilar, Omer
Alis, Deniz
Alis, Ceren
Seker, Mustafa Ege
Yergin, Mert
Ustundag, Ahmet
Hikmet, Emil
Tezcan, Alperen
Polat, Gokhan
Akkus, Ahmet Tugrul
Alper, Fatih
Velioglu, Murat
Yildiz, Omer
Selcuk, Hakan Hatem
Oksuz, Ilkay
Kizilkilic, Osman
Karaarslan, Ercan
Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study
title Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study
title_full Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study
title_fullStr Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study
title_full_unstemmed Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study
title_short Automated LVO detection and collateral scoring on CTA using a 3D self-configuring object detection network: a multi-center study
title_sort automated lvo detection and collateral scoring on cta using a 3d self-configuring object detection network: a multi-center study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232534/
https://www.ncbi.nlm.nih.gov/pubmed/37258516
http://dx.doi.org/10.1038/s41598-023-33723-w
work_keys_str_mv AT bagcilaromer automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT alisdeniz automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT alisceren automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT sekermustafaege automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT yerginmert automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT ustundagahmet automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT hikmetemil automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT tezcanalperen automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT polatgokhan automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT akkusahmettugrul automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT alperfatih automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT velioglumurat automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT yildizomer automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT selcukhakanhatem automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT oksuzilkay automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT kizilkilicosman automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy
AT karaarslanercan automatedlvodetectionandcollateralscoringonctausinga3dselfconfiguringobjectdetectionnetworkamulticenterstudy