Cargando…
From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks
Background: Explainable artificial intelligence (XAI) is a technology that can enhance trust in mental state classifications by providing explanations for the reasoning behind artificial intelligence (AI) models outputs, especially for high-dimensional and highly-correlated brain signals. Feature im...
Autores principales: | Alfeo, Antonio Luca, Zippo, Antonio G., Catrambone, Vincenzo, Cimino, Mario G.C.A., Toschi, Nicola, Valenza, Gaetano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Scientific Publishers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232646/ https://www.ncbi.nlm.nih.gov/pubmed/37086584 http://dx.doi.org/10.1016/j.cmpb.2023.107550 |
Ejemplares similares
-
Model agnostic generation of counterfactual explanations for molecules
por: Wellawatte, Geemi P., et al.
Publicado: (2022) -
PreCoF: counterfactual explanations for fairness
por: Goethals, Sofie, et al.
Publicado: (2023) -
Microstates of the cortical brain‐heart axis
por: Catrambone, Vincenzo, et al.
Publicado: (2023) -
Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases
por: Palatnik de Sousa, Iam, et al.
Publicado: (2019) -
A Multiscale Partition-Based Kolmogorov–Sinai Entropy for the Complexity Assessment of Heartbeat Dynamics
por: Scarciglia, Andrea, et al.
Publicado: (2022)