Cargando…

Nickel-phytic acid hybrid for highly efficient electrocatalytic upgrading of HMF

Electrocatalytic upgrading of 5-hydroxymethylfurfural (HMF) provides a promising way to obtain both high-value-added biomass-derived chemicals and clean energy. However, development of efficient electrocatalysts for oxidizing HMF with depressed side reactions remains a challenge. Herein, we report a...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Shuyi, Yuan, Xue, Huang, Xin, Huang, Yu, Sun, Chen, Qian, Kun, Zhang, Wenjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232861/
https://www.ncbi.nlm.nih.gov/pubmed/37273512
http://dx.doi.org/10.3389/fchem.2023.1199921
Descripción
Sumario:Electrocatalytic upgrading of 5-hydroxymethylfurfural (HMF) provides a promising way to obtain both high-value-added biomass-derived chemicals and clean energy. However, development of efficient electrocatalysts for oxidizing HMF with depressed side reactions remains a challenge. Herein, we report a nickel-phytic acid hybrid (Ni-PA) using natural phytic acid as building block for highly efficient electrocatalytic oxidation of HMF to 2, 5-furandicarboxylic acid (FDCA). Due to the coordination of nickel ion and phosphate groups of phytic acid molecule, high selectivity and yield of FDCA were achieved at 1.6 V vs. RHE. Besides, Ni-PA has a higher electrochemical surface area and lower charge-transfer resistance than Cu/Fe-PA, which significantly promotes the oxidation of HMF to FDCA. This work demonstrates the potential of metal-phytic acid hybrids as effective electrocatalysts for biomass valorization.