Cargando…
Explainable ensemble machine learning model for prediction of 28-day mortality risk in patients with sepsis-associated acute kidney injury
BACKGROUND: Sepsis-associated acute kidney injury (S-AKI) is a major contributor to mortality in intensive care units (ICU). Early prediction of mortality risk is crucial to enhance prognosis and optimize clinical decisions. This study aims to develop a 28-day mortality risk prediction model for S-A...
Autores principales: | Yang, Jijun, Peng, Hongbing, Luo, Youhong, Zhu, Tao, Xie, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232880/ https://www.ncbi.nlm.nih.gov/pubmed/37275353 http://dx.doi.org/10.3389/fmed.2023.1165129 |
Ejemplares similares
-
Development of a Nomogram to Predict 28-Day Mortality of Patients With Sepsis-Induced Coagulopathy: An Analysis of the MIMIC-III Database
por: Lu, Zongqing, et al.
Publicado: (2021) -
Low-molecular-weight heparin therapy reduces 28-day mortality in patients with sepsis-3 by improving inflammation and coagulopathy
por: Zhang, Ze, et al.
Publicado: (2023) -
Association between geriatric nutritional risk index and 28 days mortality in elderly patients with sepsis: a retrospective cohort study
por: Li, Ling, et al.
Publicado: (2023) -
Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury
por: Luo, Xiao-Qin, et al.
Publicado: (2022) -
The Association of an Early Net Ultrafiltration Rate and 28-Day Mortality in Patients Receiving Continuous Kidney Replacement Therapy
por: Wu, Buyun, et al.
Publicado: (2021)